scholarly journals Different expression pattern of flowering pathway genes contribute to male or female organ development during floral transition in the monoecious weed Ambrosia artemisiifolia L. (Asteraceae)

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7421 ◽  
Author(s):  
Kinga Klára Mátyás ◽  
Géza Hegedűs ◽  
János Taller ◽  
Eszter Farkas ◽  
Kincső Decsi ◽  
...  

The highly allergenic and invasive weed Ambrosia artemisiifolia L. is a monoecius plant with separated male and female flowers. The genetic regulation of floral morphogenesis is a less understood field in the reproduction biology of this species. Therefore the objective of this work was to investigate the genetic control of sex determination during floral organogenesis. To this end, we performed a genome-wide transcriptional profiling of vegetative and generative tissues during the plant development comparing wild-growing and in vitro cultivated plants. RNA-seq on Illumina NextSeq 500 platform with an integrative bioinformatics analysis indicated differences in 80 floral gene expressions depending on photoperiodic and endogenous initial signals. Sex specificity of genes was validated based on RT-qPCR experiments. We found 11 and 16 uniquely expressed genes in female and male transcriptomes that were responsible particularly to maintain fertility and against abiotic stress. High gene expression of homologous such as FD, FT, TFL1 and CAL, SOC1, AP1 were characteristic to male and female floral meristems during organogenesis. Homologues transcripts of LFY and FLC were not found in the investigated generative and vegetative tissues. The repression of AP1 by TFL1 homolog was demonstrated in male flowers resulting exclusive expression of AP2 and PI that controlled stamen and carpel formation in the generative phase. Alterations of male and female floral meristem differentiation were demonstrated under photoperiodic and hormonal condition changes by applying in vitro treatments.




2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Chui Yiu Bamboo Chook ◽  
Francis M. Chen ◽  
Gary Tse ◽  
Fung Ping Leung ◽  
Wing Tak Wong

Abstract Cardiovascular disease is a major cause of mortality in diabetic patients due to the heightened oxidative stress and pro-inflammatory state in vascular tissues. Effective approaches targeting cardiovascular health for diabetic patients are urgently needed. Crocodile blood, an emerging dietary supplement, was suggested to have anti-oxidative and anti-inflammatory effects in vitro, which have yet to be proven in animal models. This study thereby aimed to evaluate whether crocodile blood can protect vascular function in diabetic mice against oxidation and inflammation. Diabetic db/db mice and their counterparts db/m+ mice were treated daily with crocodile blood soluble fraction (CBSF) or vehicle via oral gavage for 4 weeks before their aortae were harvested for endothelium-dependent relaxation (EDR) quantification using wire myograph, which is a well-established functional study for vascular function indication. Organ culture experiments culturing mouse aortae from C57BL/6 J mice with or without IL-1β and CBSF were done to evaluate the direct effect of CBSF on endothelial function. Reactive oxygen species (ROS) levels in mouse aortae were assessed by dihydroethidium (DHE) staining with inflammatory markers in endothelial cells quantified by quantitative polymerase chain reaction (qPCR). CBSF significantly improved deteriorated EDR in db/db diabetic mice through both diet supplementation and direct culture, with suppression of ROS level in mouse aortae. CBSF also maintained EDR and reduced ROS levels in mouse aortae against the presence of pro-inflammatory IL-1β. Under the pro-inflammatory state induced by IL-1β, gene expressions of inflammatory cytokines were downregulated, while the protective transcripts UCP2 and SIRT6 were upregulated in endothelial cells. Our study suggests a novel beneficial effect of crocodile blood on vascular function in diabetic mice and that supplementation of diet with crocodile blood may act as a complementary approach to protect against vascular diseases through anti-oxidation and anti-inflammation in diabetic patients. Graphical abstract



Author(s):  
Eishin Yaoita ◽  
Masaaki Nameta ◽  
Yutaka Yoshida ◽  
Hidehiko Fujinaka

AbstractFibroblast growth factor 2 (FGF2) augments podocyte injury, which induces glomerulosclerosis, although the mechanisms remain obscure. In this study, we investigated the effects of FGF2 on cultured podocytes with interdigitating cell processes in rats. After 48 h incubation with FGF2 dynamic changes in the shape of primary processes and cell bodies of podocytes resulted in the loss of interdigitation, which was clearly shown by time-lapse photography. FGF2 reduced the gene expressions of constituents of the slit diaphragm, inflections of intercellular junctions positive for nephrin, and the width of the intercellular space. Immunostaining for the proliferation marker Ki-67 was rarely seen and weakly stained in the control without FGF2, whereas intensely stained cells were frequently found in the presence of FGF2. Binucleation and cell division were also observed, although no significant increase in cell number was shown. An in vitro scratch assay revealed that FGF2 enhanced migration of podocytes. These findings show that FGF2 makes podocytes to transition from the quiescent state into the cell cycle and change their morphology due to enhanced motility, and that the culture system in this study is useful for analyzing the pathological changes of podocytes in vivo.



2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii348-iii348
Author(s):  
Tina Huang ◽  
Andrea Piunti ◽  
Elizabeth Bartom ◽  
Jin Qi ◽  
Rintaro Hashizume ◽  
...  

Abstract BACKGROUND Histone H3.3 mutation (H3F3A) occurs in 50% of cortical pediatric high-grade gliomas. This mutation replaces glycine 34 with arginine or valine (G34R/V), impairing SETD2 activity (H3K36-specific trimethyltransferase), resulting in reduced H3K36me on H3G34V nucleosomes relative to wild-type. This contributes to genomic instability and drives distinct gene expressions associated with tumorigenesis. However, it is not known if this differential H3K36me3 enrichment is due to H3G34V mutant protein alone. Therefore, we set to elucidate the effect of H3G34V on genomic H3K36me3 enrichment in vitro. METHODS Doxycycline-inducible short hairpin RNA (shRNA) against H3F3A was delivered via lentivirus to established H3G34V mutant pediatric glioma cell line KNS42, and H3G34V introduced into H3.3 wild type normal human astrocytes (NHA). Transfections were confirmed by western blot, fluorescent imaging, and flow cytometry, with resulting H3.3WT and H3K36me3 expression determined by western blot. H3.3WT, H3K36me3, and H3G34V ChIP-Seq was performed to evaluate genomic enrichment. RESULTS Complete knockdown of H3G34V was achieved with DOX-induced shRNA, with no change in total H3.3, suggesting disproportionate allelic frequency of genes encoding H3.3 (H3F3A and H3F3B). Modest increase in H3K36me3 occurred after H3F3A-knockdown from KNS42, suggesting H3G34V alone impacts observed H3K36me3 levels. Distinct H3K36me3 genomic enrichment was observed with H3G34V knock-in. CONCLUSIONS We demonstrate that DOX-inducible knockdown of H3F3A in an H3G34V mutant pediatric glioma cells and H3G34V mutation transduction in wild-type astrocytes affects H3K36me3 expression. Further evaluation by ChIP-Seq analysis for restoration of wild-type genomic H3K36me3 enrichment patterns with H3G34V knockdown, and mutant H3K36me3 patterns with H3G34V transduction, is currently underway.



RSC Advances ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 4439-4439
Author(s):  
Laura Fisher

Retraction of ‘MiR-206 reduced the malignancy of hepatocellular carcinoma cells in vitro by inhibiting MET and CTNNB1 gene expressions’ by Qiang He et al., RSC Adv., 2019, 9, 1717–1725, DOI: 10.1039/C8RA09229J



2021 ◽  
Vol 9 (7) ◽  
pp. 1408
Author(s):  
Magali Van den Kerkhof ◽  
Philippe Leprohon ◽  
Dorien Mabille ◽  
Sarah Hendrickx ◽  
Lindsay B. Tulloch ◽  
...  

Current treatment options for visceral leishmaniasis have several drawbacks, and clinicians are confronted with an increasing number of treatment failures. To overcome this, the Drugs for Neglected Diseases initiative (DNDi) has invested in the development of novel antileishmanial leads, including a very promising class of oxaboroles. The mode of action/resistance of this series to Leishmania is still unknown and may be important for its further development and implementation. Repeated in vivo drug exposure and an in vitro selection procedure on both extracellular promastigote and intracellular amastigote stages were both unable to select for resistance. The use of specific inhibitors for ABC-transporters could not demonstrate the putative involvement of efflux pumps. Selection experiments and inhibitor studies, therefore, suggest that resistance to oxaboroles may not emerge readily in the field. The selection of a genome-wide cosmid library coupled to next-generation sequencing (Cos-seq) was used to identify resistance determinants and putative targets. This resulted in the identification of a highly enriched cosmid, harboring genes of chromosome 2 that confer a subtly increased resistance to the oxaboroles tested. Moderately enriched cosmids encompassing a region of chromosome 34 contained the cleavage and polyadenylation specificity factor (cpsf) gene, encoding the molecular target of several related benzoxaboroles in other organisms.



Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 459
Author(s):  
Zeying Zhao ◽  
Hanwen Zhou ◽  
Zhongnan Nie ◽  
Xuekui Wang ◽  
Biaobiao Luo ◽  
...  

Anemone flaccida Fr. Schmidt is a traditional medicinal herb in southwestern China and has multiple pharmacological effects on bruise injuries and rheumatoid arthritis (RA). A new drug with a good curative effect on RA has recently been developed from the extract of A. flaccida rhizomes, of which the main medicinal ingredients are triterpenoid saponins. Due to excessive exploitation, the wild population has been scarce and endangered in a few of its natural habitats and research on the cultivation of the plant commenced. Studies on the gene expressions related to the biosynthesis of triterpenoid saponins are not only helpful for understanding the effects of environmental factors on the medicinal ingredient accumulations but also necessary for monitoring the herb quality of the cultivated plants. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) as a sensitive and powerful technique has been widely used to detect gene expression across tissues in plants at different stages; however, its accuracy and reliability depend largely on the reference gene selection. In this study, the expressions of 10 candidate reference genes were evaluated in various organs of the wild and cultivated plants at different stages, using the algorithms of geNorm, NormFinder and BestKeeper, respectively. The purpose of this study was to identify the suitable reference genes for RT-qPCR detection in A. flaccida. The results showed that two reference genes were sufficient for RT-qPCR data normalization in A. flaccida. PUBQ and ETIF1a can be used as suitable reference genes in most organs at various stages because of their expression stabilitywhereas the PUBQ and EF1Α genes were desirable in the rhizomes of the plant at the vegetative stage.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie Shinohara ◽  
Hiroshi Arakawa ◽  
Yuuichi Oda ◽  
Nobuaki Shiraki ◽  
Shinji Sugiura ◽  
...  

AbstractExamining intestine–liver interactions is important for achieving the desired physiological drug absorption and metabolism response in in vitro drug tests. Multi-organ microphysiological systems (MPSs) constitute promising tools for evaluating inter-organ interactions in vitro. For coculture on MPSs, normal cells are challenging to use because they require complex maintenance and careful handling. Herein, we demonstrated the potential of coculturing normal cells on MPSs in the evaluation of intestine–liver interactions. To this end, we cocultured human-induced pluripotent stem cell-derived intestinal cells and fresh human hepatocytes which were isolated from PXB mice with medium circulation in a pneumatic-pressure-driven MPS with pipette-friendly liquid-handling options. The cytochrome activity, albumin production, and liver-specific gene expressions in human hepatocytes freshly isolated from a PXB mouse were significantly upregulated via coculture with hiPS-intestinal cells. Our normal cell coculture shows the effects of the interactions between the intestine and liver that may occur in vivo. This study is the first to demonstrate the coculturing of hiPS-intestinal cells and fresh human hepatocytes on an MPS for examining pure inter-organ interactions. Normal-cell coculture using the multi-organ MPS could be pursued to explore unknown physiological mechanisms of inter-organ interactions in vitro and investigate the physiological response of new drugs.



Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 615
Author(s):  
Shang-En Huang ◽  
Erna Sulistyowati ◽  
Yu-Ying Chao ◽  
Bin-Nan Wu ◽  
Zen-Kong Dai ◽  
...  

Osteoarthritis is a degenerative arthropathy that is mainly characterized by dysregulation of inflammatory responses. KMUP-1, a derived chemical synthetic of xanthine, has been shown to have anti-inflammatory and antioxidant properties. Here, we aimed to investigate the in vitro anti-inflammatory and in vivo anti-osteoarthritis effects of KMUP-1. Protein and gene expressions of inflammation markers were determined by ELISA, Western blotting and microarray, respectively. RAW264.7 mouse macrophages were cultured and pretreated with KMUP-1 (1, 5, 10 μM). The productions of TNF-α, IL-6, MMP-2 and MMP- 9 were reduced by KMUP-1 pretreatment in LPS-induced inflammation of RAW264.7 cells. The expressions of iNOS, TNF-α, COX-2, MMP-2 and MMP-9 were also inhibited by KMUP-1 pretreatment. The gene expression levels of TNF and COX families were also downregulated. In addition, KMUP-1 suppressed the activations of ERK, JNK and p38 as well as phosphorylation of IκBα/NF-κB signaling pathways. Furthermore, SIRT1 inhibitor attenuated the inhibitory effect of KMUP-1 in LPS-induced NF-κB activation. In vivo study showed that KMUP-1 reduced mechanical hyperalgesia in monoiodoacetic acid (MIA)-induced rats OA. Additionally, KMUP-1 pretreatment reduced the serum levels of TNF-α and IL-6 in MIA-injected rats. Moreover, macroscopic and histological observation showed that KMUP-1 reduced articular cartilage erosion in rats. Our results demonstrated that KMUP-1 inhibited the inflammatory responses and restored SIRT1 in vitro, alleviated joint-related pain and cartilage destruction in vivo. Taken together, KMUP-1 has the potential to improve MIA-induced articular cartilage degradation by inhibiting the levels and expression of inflammatory mediators suggesting that KMUP-1 might be a potential therapeutic agent for OA.



Sign in / Sign up

Export Citation Format

Share Document