scholarly journals In silico analysis of maize HDACs with an emphasis on their response to biotic and abiotic stresses

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8539 ◽  
Author(s):  
Kang Zhang ◽  
Lu Yu ◽  
Xi Pang ◽  
Hongzhe Cao ◽  
Helong Si ◽  
...  

Histone deacetylases (HDACs) are key epigenetic factors in regulating chromatin structure and gene expression in multiple aspects of plant growth, development, and response to abiotic or biotic stresses. Many studies on systematic analysis and molecular function of HDACs in Arabidopsis and rice have been conducted. However, systematic analysis of HDAC gene family and gene expression in response to abiotic and biotic stresses has not yet been reported. In this study, a systematic analysis of the HDAC gene family in maize was performed and 18 ZmHDACs distributed on nine chromosomes were identified. Phylogenetic analysis of ZmHDACs showed that this gene family could be divided into RPD3/HDA1, SIR2, and HD2 groups. Tissue-specific expression results revealed that ZmHDACs exhibited diverse expression patterns in different tissues, indicating that these genes might have diversified functions in growth and development. Expression pattern of ZmHDACs in hormone treatment and inoculation experiment suggested that several ZmHDACs might be involved in jasmonic acid or salicylic acid signaling pathway and defense response. Interestingly, HDAC genes were downregulated under heat stress, and immunoblotting results demonstrated that histones H3K9ac and H4K5ac levels were increased under heat stress. These results provide insights into ZmHDACs, which could help to reveal their functions in controlling maize development and responses to abiotic or biotic stresses.

BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Qiaoli Du ◽  
Yuanpeng Fang ◽  
Junmei Jiang ◽  
Meiqing Chen ◽  
Xiaodong Fu ◽  
...  

Abstract Background Histone deacetylases (HDACs) play an important role in the regulation of gene expression, which is indispensable in plant growth, development, and responses to environmental stresses. In Arabidopsis and rice, the molecular functions of HDACs have been well-described. However, systematic analysis of the HDAC gene family and gene expression in response to biotic and abiotic stresses has not been reported for sorghum. Results We conducted a systematic analysis of the sorghum HDAC gene family and identified 19 SbHDACs mainly distributed on eight chromosomes. Phylogenetic tree analysis of SbHDACs showed that the gene family was divided into three subfamilies: RPD3/HDA1, SIR2, and HD2. Tissue-specific expression results showed that SbHDACs displayed different expression patterns in different tissues, indicating that these genes may perform different functions in growth and development. The expression pattern of SbHDACs under different stresses (high and low temperature, drought, osmotic and salt) and pathogen-associated molecular model (PAMPs) elf18, chitin, and flg22) indicated that SbHDAC genes may participate in adversity responses and biological stress defenses. Overexpression of SbHDA1, SbHDA3, SbHDT2 and SbSRT2 in Escherichia coli promoted the growth of recombinant cells under abiotic stress. Interestingly, we also showed that the sorghum acetylation level was enhanced when plants were under cold, heat, drought, osmotic and salt stresses. The findings will help us to understand the HDAC gene family in sorghum, and illuminate the molecular mechanism of the responses to abiotic and biotic stresses. Conclusion We have identified and classified 19 HDAC genes in sorghum. Our data provides insights into the evolution of the HDAC gene family and further support the hypothesis that these genes are important for the plant responses to abiotic and biotic stresses.


2022 ◽  
Vol 12 ◽  
Author(s):  
Rehman Sarwar ◽  
Rui Geng ◽  
Lei Li ◽  
Yue Shan ◽  
Ke-Ming Zhu ◽  
...  

BRASSINAZOLE RESISTANT (BZR) are transcriptional factors that bind to the DNA of targeted genes to regulate several plant growth and physiological processes in response to abiotic and biotic stresses. However, information on such genes in Brassica napus is minimal. Furthermore, the new reference Brassica napus genome offers an excellent opportunity to systematically characterize this gene family in B. napus. In our study, 21 BnaBZR genes were distributed across 19 chromosomes of B. napus and clustered into four subgroups based on Arabidopsis thaliana orthologs. Functional divergence analysis among these groups evident the shifting of evolutionary rate after the duplication events. In terms of structural analysis, the BnaBZR genes within each subgroup are highly conserved but are distinctive within groups. Organ-specific expression analyses of BnaBZR genes using RNA-seq data and quantitative real-time polymerase chain reaction (qRT-PCR) revealed complex expression patterns in plant tissues during stress conditions. In which genes belonging to subgroups III and IV were identified to play central roles in plant tolerance to salt, drought, and Sclerotinia sclerotiorum stress. The insights from this study enrich our understanding of the B. napus BZR gene family and lay a foundation for future research in improving rape seed environmental adaptability.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hemeng Wang ◽  
Jin-Gui Chen ◽  
Ying Chang

Ovate family proteins (OFPs) are a family of plant growth regulators that play diverse roles in many aspects of physiological processes. OFPs have been characterized in various plant species including tomato, Arabidopsis, and rice. However, little is known about OFPs in woody species. Here, a total of 30 PtOFP genes were identified from the genome of Populus trichocarpa and were further grouped into four subfamilies based on their sequence similarities. Gene expression analysis indicated that some members of the PtOFP gene family displayed tissue/organ-specific patterns. Analysis of cis-acting elements in the promoter as well as gene expression by hormone treatment revealed putative involvement of PtOFPs in hormonal response. Furthermore, PtOFP1 (Potri.006G107700) was further experimentally demonstrated to act as a transcriptional repressor. Yeast two-hybrid assay showed physical interactions of PtOFP1 with other proteins, which suggests that they might function in various cellular processes by forming protein complexes. In addition, overexpression of PtOFP1 in Arabidopsis conferred enhanced tolerance to PEG-induced drought stress at seedling stage, as well as a higher survival rate than the wild type at mature stage. These results provide a systematic analysis of the Populus OFP gene family and lay a foundation for functional characterization of this gene family.


Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 280 ◽  
Author(s):  
Tao Xie ◽  
Lei Zeng ◽  
Xin Chen ◽  
Hao Rong ◽  
Jingjing Wu ◽  
...  

The plant specific LATERAL ORGAN BOUNDARIES (LOB)-domain (LBD) proteins belong to a family of transcription factors that play important roles in plant growth and development, as well as in responses to various stresses. However, a comprehensive study of LBDs in Brassica napus has not yet been reported. In the present study, 126 BnLBD genes were identified in B. napus genome using bioinformatics analyses. The 126 BnLBDs were phylogenetically classified into two groups and nine subgroups. Evolutionary analysis indicated that whole genome duplication (WGD) and segmental duplication played important roles in the expansion of the BnLBD gene family. On the basis of the RNA-seq analyses, we identified BnLBD genes with tissue or developmental specific expression patterns. Through cis-acting element analysis and hormone treatment, we identified 19 BnLBD genes with putative functions in plant response to abscisic acid (ABA) treatment. This study provides a comprehensive understanding on the origin and evolutionary history of LBDs in B. napus, and will be helpful in further functional characterisation of BnLBDs.


2019 ◽  
Vol 20 (22) ◽  
pp. 5796
Author(s):  
Qianqian Zhou ◽  
Qingchang Li ◽  
Peng Li ◽  
Songtao Zhang ◽  
Che Liu ◽  
...  

Carotenoid cleavage dioxygenases (CCDs) selectively catalyze carotenoids, forming smaller apocarotenoids that are essential for the synthesis of apocarotenoid flavor, aroma volatiles, and phytohormone ABA/SLs, as well as responses to abiotic stresses. Here, 19, 11, and 10 CCD genes were identified in Nicotiana tabacum, Nicotiana tomentosiformis, and Nicotiana sylvestris, respectively. For this family, we systematically analyzed phylogeny, gene structure, conserved motifs, gene duplications, cis-elements, subcellular and chromosomal localization, miRNA-target sites, expression patterns with different treatments, and molecular evolution. CCD genes were classified into two subfamilies and nine groups. Gene structures, motifs, and tertiary structures showed similarities within the same groups. Subcellular localization analysis predicted that CCD family genes are cytoplasmic and plastid-localized, which was confirmed experimentally. Evolutionary analysis showed that purifying selection dominated the evolution of these genes. Meanwhile, seven positive sites were identified on the ancestor branch of the tobacco CCD subfamily. Cis-regulatory elements of the CCD promoters were mainly involved in light-responsiveness, hormone treatment, and physiological stress. Different CCD family genes were predominantly expressed separately in roots, flowers, seeds, and leaves and exhibited divergent expression patterns with different hormones (ABA, MeJA, IAA, SA) and abiotic (drought, cold, heat) stresses. This study provides a comprehensive overview of the NtCCD gene family and a foundation for future functional characterization of individual genes.


2021 ◽  
Vol 22 (24) ◽  
pp. 13366
Author(s):  
Xuechun Wang ◽  
Nan Chao ◽  
Aijing Zhang ◽  
Jiaqi Kang ◽  
Xiangning Jiang ◽  
...  

Caffeoyl shikimate esterase (CSE) hydrolyzes caffeoyl shikimate into caffeate and shikimate in the phenylpropanoid pathway. In this study, we performed a systematic analysis of the CSE gene family and investigated the possible roles of CSE and CSE-like genes in Populus. We conducted a genome-wide analysis of the CSE gene family, including functional and phylogenetic analyses of CSE and CSE-like genes, using the poplar (Populus trichocarpa) genome. Eighteen CSE and CSE-like genes were identified in the Populus genome, and five phylogenetic groups were identified from phylogenetic analysis. CSEs in Group Ia, which were proposed as bona fide CSEs, have probably been lost in most monocots except Oryza sativa. Primary functional classification showed that PoptrCSE1 and PoptrCSE2 had putative function in lignin biosynthesis. In addition, PoptrCSE2, along with PoptrCSE12, might also respond to stress with a function in cell wall biosynthesis. Enzymatic assay of PoptoCSE1 (Populus tomentosa), -2 and -12 showed that PoptoCSE1 and -2 maintained CSE activity. PoptoCSE1 and 2 had similar biochemical properties, tissue expression patterns and subcellular localization. Most of the PoptrCSE-like genes are homologs of AtMAGL (monoacylglycerol lipase) genes in Arabidopsis and may function as MAG lipase in poplar. Our study provides a systematic understanding of this novel gene family and suggests the function of CSE in monolignol biosynthesis in Populus.


2020 ◽  
Author(s):  
Devanshi Patel ◽  
Xiaoling Zhang ◽  
John J. Farrell ◽  
Jaeyoon Chung ◽  
Thor D. Stein ◽  
...  

ABSTRACTBecause regulation of gene expression is heritable and context-dependent, we investigated AD-related gene expression patterns in cell-types in blood and brain. Cis-expression quantitative trait locus (eQTL) mapping was performed genome-wide in blood from 5,257 Framingham Heart Study (FHS) participants and in brain donated by 475 Religious Orders Study/Memory & Aging Project (ROSMAP) participants. The association of gene expression with genotypes for all cis SNPs within 1Mb of genes was evaluated using linear regression models for unrelated subjects and linear mixed models for related subjects. Cell type-specific eQTL (ct-eQTL) models included an interaction term for expression of “proxy” genes that discriminate particular cell type. Ct-eQTL analysis identified 11,649 and 2,533 additional significant gene-SNP eQTL pairs in brain and blood, respectively, that were not detected in generic eQTL analysis. Of note, 386 unique target eGenes of significant eQTLs shared between blood and brain were enriched in apoptosis and Wnt signaling pathways. Five of these shared genes are established AD loci. The potential importance and relevance to AD of significant results in myeloid cell-types is supported by the observation that a large portion of GWS ct-eQTLs map within 1Mb of established AD loci and 58% (23/40) of the most significant eGenes in these eQTLs have previously been implicated in AD. This study identified cell-type specific expression patterns for established and potentially novel AD genes, found additional evidence for the role of myeloid cells in AD risk, and discovered potential novel blood and brain AD biomarkers that highlight the importance of cell-type specific analysis.


Author(s):  
Zsolt Albert ◽  
Cs. Deák ◽  
A. Miskó ◽  
M. Tóth ◽  
I. Papp

Wax production is an important aspect of apple (Malus domestica Borkh.) fruit development from both theoretical and practical point of views. The complex molecular mechanism that controls wax biosynthesis is still widely unknown but many studies focused on this topic. We aimed to develop further the experimental framework of these efforts with a description of an improved reference genes expression system. Results in the literature show that similarities exist among the expression of some housekeeping genes of different plant species. Based on these considerations and on gene expression data from Arabidopsis thaliana, some genes in apple were assigned for analysis. EST sequences of apple were used to design specific primers for RT-PCR experiments. Isolation of intact RNA from different apple tissues and performing RT-PCR reaction were also key point in obtaining expression patterns. To monitor DNA contamination of the RNA samples, specific primers were used that amplify intron-containing sequences from the cDNA. We found that actin primers can be used for the detection of intron containing genomic DNA, and tubulin primers are good internal controls in RT-PCR experiments. We were able to make a difference between tissue-specific and tissue-independent gene-expression, furthermore we found tissue specific differences between the expression patterns of candidate genes, that are potentially involved in wax-biosynthesis. Our results show that KCS1 and KCS4 are overexpressed in the skin tissue, this could mean that these genes have skin-specific expression in apple fruit.


2020 ◽  
Vol 111 (6) ◽  
pp. 539-547
Author(s):  
Sumaetee Tangwancharoen ◽  
Brice X Semmens ◽  
Ronald S Burton

Abstract Geographic variation in environmental temperature can select for local adaptation among conspecific populations. Divergence in gene expression across the transcriptome is a key mechanism for evolution of local thermal adaptation in many systems, yet the genetic mechanisms underlying this regulatory evolution remain poorly understood. Here we examine gene expression in 2 locally adapted Tigriopus californicus populations (heat tolerant San Diego, SD, and less tolerant Santa Cruz, SC) and their F1 hybrids during acute heat stress response. Allele-specific expression (ASE) in F1 hybrids was used to determine cis-regulatory divergence. We found that the number of genes showing significant allelic imbalance increased under heat stress compared to unstressed controls. This suggests that there is significant population divergence in cis-regulatory elements underlying heat stress response. Specifically, the number of genes showing an excess of transcripts from the more thermal tolerant (SD) population increased with heat stress while that number of genes with an SC excess was similar in both treatments. Inheritance patterns of gene expression also revealed that genes displaying SD-dominant expression phenotypes increase in number in response to heat stress; that is, across loci, gene expression in F1’s following heat stress showed more similarity to SD than SC, a pattern that was absent in the control treatment. The observed patterns of ASE and inheritance of gene expression provide insight into the complex processes underlying local adaptation and thermal stress response.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 670 ◽  
Author(s):  
Dong ◽  
Jiang ◽  
Yang ◽  
Xiao ◽  
Bai ◽  
...  

The NAC gene family is one of the largest families of transcriptional regulators in plants, and it plays important roles in the regulation of growth and development as well as in stress responses. Genome-wide analyses have been performed in diverse plant species, but there is still no systematic analysis of the NAC genes of Coffea canephora Pierre ex A. Froehner. In this study, we identified 63 NAC genes from the genome of C. canephora. The basic features and comparison analysis indicated that the NAC gene members increased via duplication events during the evolution of the plant. Phylogenetic analysis divided the NAC proteins from C. canephora, Arabidopsis and rice into 16 subgroups. Analysis of the expression patterns of CocNACs under cold stress and coffee bean development indicated that 38 CocNACs were differentially expressed under cold stress; six genes may play important roles in the process of cold acclimation, and four genes among 54 CocNACs showing a variety of expression patterns during different developmental stages of coffee beans may be positively related to the bean development. This study can expand our understanding of the functions of the CocNAC gene family in cold responses and bean development, thereby potentially intensifying the molecular breeding programs of Coffea spp. plants.


Sign in / Sign up

Export Citation Format

Share Document