scholarly journals Influence of hydropower stations on the water microbiota in the downstream of Jinsha River, China

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9500
Author(s):  
Xiaojuan Chen ◽  
Da He ◽  
Lianfeng Zhou ◽  
Yankun Cao ◽  
Zhanjing Li

Construction of hydropower stations has been an important approach to meet China’s increasing power demand, but the impact of construction of hydropower stations on river microbiota is not fully understood. To evaluate this, the microbial composition from 18 sampling sites in the downstream of Jinsha River of China, upstream and downstream of two completed and two under-construction hydropower stations, were analyzed using high-throughput 16S rRNA gene sequencing. Three independent samples from each site were analyzed. A total of 18,683 OTUs from 1,350 genera were identified at 97% sequence similarity. Our results showed that the completion of hydropower stations would significantly increase the relative abundances of Acidobacteria, Chlorobi, Chloroflexi, Cyanobacteria, Nitrospirae, and Planctomycetes, especially the relative abundance of Synechococcus dOTUs and thus increase the risk of algal blooms. PCA based on all KEGG pathways and the significantly different KEGG pathways showed the predicted metabolic characteristics of the water microbiota by PICRUSt in the activated hydropower station group were significant difference to the other groups. Results from canonical correspondence analysis showed that water temperature and dissolved oxygen had significant effects on microbiota composition. These results are important for assessing the impact of hydropower stations on river microbiota and their potential environmental risks.

Author(s):  
Shiju Xiao ◽  
Guangzhong Zhang ◽  
Chunyan Jiang ◽  
Xin Liu ◽  
Xiaoxu Wang ◽  
...  

BackgroundIncreasing evidence has shown that alterations in the intestinal microbiota play an important role in the pathogenesis of psoriasis. The existing relevant studies focus on 16S rRNA gene sequencing, but in-depth research on gene functions and comprehensive identification of microbiota is lacking.ObjectivesTo comprehensively identify characteristic gut microbial compositions, genetic functions and relative metabolites of patients with psoriasis and to reveal the potential pathogenesis of psoriasis.MethodsDNA was extracted from the faecal microbiota of 30 psoriatic patients and 15 healthy subjects, and metagenomics sequencing and bioinformatic analyses were performed. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database, cluster of orthologous groups (COG) annotations, and metabolic analyses were used to indicate relative target genes and pathways to reveal the pathogenesis of psoriasis.ResultsCompared with healthy individuals, the gut microbiota of psoriasis patients displayed an alteration in microbial taxa distribution, but no significant difference in microbial diversity. A distinct gut microbial composition in patients with psoriasis was observed, with an increased abundance of the phyla Firmicutes, Actinobacteria and Verrucomicrobia and genera Faecalibacterium, Bacteroides, Bifidobacterium, Megamonas and Roseburia and a decreased abundance of the phyla Bacteroidetes, Euryarchaeota and Proteobacteria and genera Prevotella, Alistipes, and Eubacterium. A total of 134 COGs were predicted with functional analysis, and 15 KEGG pathways, including lipopolysaccharide (LPS) biosynthesis, WNT signaling, apoptosis, bacterial secretion system, and phosphotransferase system, were significantly enriched in psoriasis patients. Five metabolites, hydrogen sulfide (H2S), isovalerate, isobutyrate, hyaluronan and hemicellulose, were significantly dysregulated in the psoriatic cohort. The dysbiosis of gut microbiota, enriched pathways and dysregulated metabolites are relevant to immune and inflammatory response, apoptosis, the vascular endothelial growth factor (VEGF) signaling pathway, gut-brain axis and brain-skin axis that play important roles in the pathogenesis of psoriasis.ConclusionsA clear dysbiosis was displayed in the gut microbiota profile, genetic functions and relative metabolites of psoriasis patients. This study is beneficial for further understanding the inflammatory pathogenesis of psoriasis and could be used to develop microbiome-based predictions and therapeutic approaches.


Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2245
Author(s):  
Yiping Zhu ◽  
Wuyan Jiang ◽  
Reed Holyoak ◽  
Bo Liu ◽  
Jing Li

The objective of this study was to investigate the oral microbial composition of the donkey and whether basic dental treatment, such as dental floating, would make a difference to the oral microbial environment in donkeys with dental diseases using high-throughput bacterial 16S rRNA gene sequencing. Oral swab samples were collected from 14 donkeys with various dental abnormalities on day 0 (before treatment) and day 20 (twenty days after treatment). It is the first report focusing on the oral microbiome in donkeys with dental diseases and the impact of common dental procedures thereon. Identified in group Day 0 and group Day 20, respectively, were 60,439.6 and 58,579.1 operational taxonomic units (OTUs). Several taxa in Day 0 differed significantly from Day 20 at the phylum and genus levels, but no statistically significant difference was observed in richness and diversity of Day 0 and Day 20. The results also indicated that a larger-scale study focusing on healthy donkey oral microbiome, as well as the correlation of dental diseases and oral microbiomes at different time frames following more specific and consistent dental treatment, are warranted.


Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 254
Author(s):  
Ying Wang ◽  
Jianqing Zhu ◽  
Jie Fang ◽  
Li Shen ◽  
Shuojia Ma ◽  
...  

We characterized the gut microbial composition and relative abundance of gut bacteria in the larvae and adults of Pieris canidia by 16S rRNA gene sequencing. The gut microbiota structure was similar across the life stages and sexes. The comparative functional analysis on P. canidia bacterial communities with PICRUSt showed the enrichment of several pathways including those for energy metabolism, immune system, digestive system, xenobiotics biodegradation, transport, cell growth and death. The parameters often used as a proxy of insect fitness (development time, pupation rate, emergence rate, adult survival rate and weight of 5th instars larvae) showed a significant difference between treatment group and untreated group and point to potential fitness advantages with the gut microbiomes in P. canidia. These data provide an overall view of the bacterial community across the life stages and sexes in P. canidia.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ying Li ◽  
Chunhong Jia ◽  
Xiaojun Lin ◽  
Lili Lin ◽  
Lizhen Li ◽  
...  

Background: Feeding intolerance (FI) is a common condition in premature infants that results in growth retardation and even necrotizing enterocolitis. The gut microbiome is linked to FI occurrence; however, the outcome after FI recovery is unclear.Methods: Fecal samples were collected from 11 pairs of premature twins/triplets for 16S rRNA gene sequencing. Initial fecal samples were collected shortly after admission, and then every other week until 7 weeks or discharge.Results: After FI recovery, there was no significant difference in the β-diversity of the intestinal flora between the FI group and the feeding tolerance (FT) group. By contrast, there was a significant difference in the β-diversity. Proteobacteria was the predominant phylum in the microbiome of the FI group, whereas Firmicutes was the predominant phylum in the microbiome of the FT group. The predominant bacteria with LDA >4 between the two groups at 13–15 days after birth, 19–28 days after birth, and at discharge were different, with the proportions of Bacillus, Clostridium butyricum, and Clostridium being highest in the FT group and Firmicutes, unidentified_Clostridiales, and Proteobacteria being highest in the FI group. Similarly, there were significant differences in the relative abundances of KEGG pathways, such as fatty acid metabolism, DNA repair and recombination proteins, energy metabolism, and amino acid metabolism, between the two groups (P < 0.01).Conclusions: There was a significant difference in diversity of the intestinal flora after feeding intolerance recovery. Feeding intolerance may disturb the succession of the intestinal bacterial community.


2019 ◽  
Vol 8 (1) ◽  
pp. 79 ◽  
Author(s):  
Won Yoon ◽  
Han-Na Kim ◽  
Eunkyo Park ◽  
Seungho Ryu ◽  
Yoosoo Chang ◽  
...  

Cholecystectomy alters the bile flow into the intestine and the enterohepatic circulation of the bile acids; this may affect the gut microbiota. We assessed the gut microbiota composition of patients who had undergone cholecystectomy and compared with those who had not. From a cohort of 1463 adult participants who underwent comprehensive health screening examinations, 27 subjects who had undergone cholecystectomy (cholecystectomy group) and 81 age- and sex-matched subjects who had not (control group) were selected. Clinical parameters were collected and compared. Microbial composition was determined by 16S rRNA gene sequencing of DNA extracted from fecal samples. We evaluated differences in the overall microbial composition and in the abundance of taxa. The two groups were comparable with respect to clinical characteristics and laboratory results. The actual number of taxa observed in a sample (observed features) was significantly lower in the cholecystectomy group than in the control group (p = 0.042). The beta diversity of Jaccard distance index was significantly different between the two groups (p = 0.027). Blautia obeum and Veillonella parvula were more abundant in the cholecystectomy group. The difference in the diversity of the gut microbiota between the cholecystectomy and control groups was subtle. However, B. obeum and V. parvula, which have azoreductase activity, were more abundant in the cholecystectomy group. The impact of such changes in the gut microbiota on health remains to be determined.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Datao Lin ◽  
Xiaoying Zheng ◽  
Benjamin Sanogo ◽  
Tao Ding ◽  
Xi Sun ◽  
...  

Abstract Background Aedes aegypti and Aedes albopictus are invasive mosquito species and significantly impact human health in southern China. Microbiota are confirmed to affect the development and immunity of mosquitoes. However, scientists have focused more on midgut microbiota of female mosquitoes and bacterial differences between female and male Aedes mosquitoes. The relationship between the midgut and entire body microbiota of Aedes is unclear. In this study, we collected mosquito samples reared under the same laboratory conditions and compared the microbial composition of midgut and entire bodies of Aedes aegypti and Aedes albopictus using 16S rRNA gene sequencing. Methods In this study, we collected mosquito samples reared under the same laboratory conditions and compared the microbial composition of midgut and entire bodies of Aedes aegypti and Aedes albopictus using 16S rRNA gene sequencing. Results A total of 341 OTUs were identified, showing that Proteobacteria was the dominant phylum and Methylobacterium the dominant genus in both Aedes aegypti and Aedes albopictus. The bacterial diversity and community structures of the entire bodies were similar between males and females in both Aedes aegypti and Aedes albopictus. Conversely, the bacterial compositions of male and female Aedes aegypti and Aedes albopictus were significantly different. NMDS analysis, UPGMA analysis, diversity indices and OTU distribution demonstrated that compositions and structures in midgut microbiota were similar but significantly different in the entire bodies of Aedes aegypti and Aedes albopictus. Functional prediction analysis showed that metabolism and environmental information processing were the dominant KEGG pathways at level 1. Our study showed that there were significantly different level 2 and 3 KEGG pathways in the midgut microbiota (16 level 2 and 24 level 3) and the entire bodies (33 level 2 and 248 level 3) between female Aedes albopictus and Aedes Aegypti. Conclusions Our findings that Aedes aegypti and Aedes albopictus reared in the same laboratory harbor a similar gut bacterial microbiome but different entire body microbiota imply that the gut microbiota of adult mosquitoes is environmentally determined regardless of the host genotype, but the entire body microbiota is more genetically determined. Our findings improved the understanding of the microbiota in the entire and partial tissues of Aedes mosquitoes. Graphical abstract


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 685-685
Author(s):  
Elaine Glenny ◽  
Jintong Liu ◽  
Zorka Djukic ◽  
Michael Pellizzon ◽  
Ian Carroll

Abstract Objectives The use of compositionally defined purified diets (PDs)—diets with known sources and quantities of all nutrients—permits investigators to control this major environmental factor in rodent studies. However, mice fed a standard PD exhibit abnormal gastrointestinal (GI) anatomy compared to mice fed Purina 5001, a grain-based diet (GBD). Interestingly, the addition a soluble fiber (inulin) to PDs (typically only containing cellulose, an insoluble fiber) ameliorates these adverse effects. The impact of PDs on the intestinal microbiota has not yet been investigated. We therefore sought to identify PD-supplemented fiber(s) that best recapitulate the GI health and intestinal microbiota of mice fed a GBD, while also including an additional reference GBD (Teklad 2020SX). Methods 7-week-old C57BL/6J male mice were individually housed and randomly assigned to a diet (two GBDs and four PDs with varying fiber composition) for 28 days. To assess changes in GI anatomy, small intestinal and colon lengths and colon and cecal weights were recorded at tissue harvest. Cecal contents, colon contents, and fecal pellets were collected for 16S rRNA gene sequencing to compare microbial profiles across different GI niches and between diets using the Divisive Amplicon Denoising Algorithm (DADA2) pipeline. Results Consistent with published data, GI anatomy was altered in mice consuming PDs compared to the Purina GBD. However, there were no significant anatomical differences between mice consuming PDs and the Teklad GBD. Characterization of microbial communities revealed that the GI niche (cecum, colon, or feces) dictated microbial composition (P < 0.001, ANOSIM). Microbiotas from mice fed any PD significantly differed from mice consuming either GBD (P < 0.05, ANOSIM). Microbiotas were also distinct between mice fed either Purina 5001 or Teklad 2020SX (P < 0.01, ANOSIM). Conclusions These data suggest that Purina 5001 does not represent all GBDs and that PDs may not significantly alter rodent GI anatomy compared to GBDs. As each diet tested significantly altered the microbial community, future work will seek to determine whether a specific PD-associated gut microbiota is beneficial to GI health. Funding Sources The NIH, the Honors Carolina Sarah Steele Danhoff Undergraduate Research Fund, and Research Diets, Inc.


2017 ◽  
Vol 6 ◽  
Author(s):  
Paul Blatchford ◽  
Halina Stoklosinski ◽  
Sarah Eady ◽  
Alison Wallace ◽  
Christine Butts ◽  
...  

AbstractThis study investigated the impact of ACTAZIN™ green (2400 and 600 mg) and Livaux™ (2400 mg) gold kiwifruit supplements on faecal microbial composition and metabolites in healthy and functionally constipated (FC) participants. The participants were recruited into the healthy group (n 20; one of whom did not complete the study) and the FC group (n 9), each of whom consumed all the treatments and a placebo (isomalt) for 4 weeks in a randomised cross-over design interspersed with 2-week washout periods. Modification of faecal microbiota composition and metabolism was determined by 16S rRNA gene sequencing and GC, and colonic pH was calculated using SmartPill® wireless motility capsules. A total of thirty-two taxa were measured at greater than 1 % abundance in at least one sample, ten of which differed significantly between the baseline healthy and FC groups. Specifically, Bacteroidales and Roseburia spp. were significantly more abundant (P < 0·05) in the healthy group and taxa including Ruminococcaceae, Dorea spp. and Akkermansia spp. were significantly more abundant (P < 0·05) in the FC group. In the FC group, Faecalibacterium prausnitzii abundance significantly increased (P = 0·024) from 3·4 to 7·0 % following Livaux™ supplementation, with eight of the nine participants showing a net increase. Lower proportions of F. prausnitzii are often associated with gastrointestinal disorders. The discovery that Livaux™ supplementation increased F. prausnitzii abundance offers a potential strategy for improving gut microbiota composition, as F. prausnitzii is a butyrate producer and has also been shown to exert anti-inflammatory effects in many studies.


Author(s):  
Yoshihiro Tomizawa ◽  
Shunya Kurokawa ◽  
Daiki Ishii ◽  
Katsuma Miyaho ◽  
Chiharu Ishii ◽  
...  

Abstract Background The antibacterial effects of psychotropics may be part of their pharmacological effects when treating depression. However, limited studies have focused on gut microbiota in relation to prescribed medication. Method We longitudinally investigated the relationship between patients’ prescribed medications and intestinal bacterial diversity in a naturalistic treatment course for patients with major depressive disorders and anxiety disorders. Patients were recruited and their stool was collected at 3 time points during their usual psychiatric treatments. Gut microbiota were analyzed using 16S rRNA gene sequencing. We examined the impact of psychotropics (i.e., antidepressants, anxiolytics, antipsychotics) on their gut microbial diversity and functions. Results We collected 246 stool samples from 40 patients. Despite no differences in microbial diversity between medication groups at the baseline, over the course of treatment, phylogenic diversity whole-tree diversity decreased in patients on antipsychotics compared with patients without (P = .027), and beta diversity followed this trend. Based on a fixed-effect model, antipsychotics predicted microbial diversity; the higher doses correlated with less diversity based on the Shannon index and phylogenic diversity whole tree (estimate = −0.00254, SE = 0.000595, P &lt; .0001; estimate = −0.02644, SE = 0.00833, P = .002, respectively). Conclusion Antipsychotics may play a role in decreasing the alpha diversity of the gut microbiome among patients with depression and anxiety, and our results indicate a relationship with medication dosage. Future studies are warranted and should consider patients’ types and doses of antipsychotics in order to further elucidate the mechanisms of gut-brain interactions in psychiatric disorders.


2017 ◽  
Vol 8 (5) ◽  
pp. 681-695 ◽  
Author(s):  
J.S.Y. Low ◽  
S.-E. Soh ◽  
Y.K. Lee ◽  
K.Y.C. Kwek ◽  
J.D. Holbrook ◽  
...  

Several studies have reported that intestinal microbial colonisation patterns differ between non-allergic and allergic infants. However, the microbial signature underlying the pathogenesis of allergies remains unclear. We aim to gain insight into the development of the intestinal microbiota of healthy infants and infants who develop allergy in early life, and identify potential microbiota biomarkers of later allergic disease. Using a case-control design in a Chinese sub-cohort of a Singaporean birth cohort (GUSTO), we utilised 16S rRNA gene sequencing to assess intestinal microbial composition and diversity of 21 allergic and 18 healthy infants at 3 weeks, 3 months and 6 months of age, and correlated the microbiota with allergy at ages 18 and 36 months. Pronounced differences in intestinal microbiota composition between allergic and healthy infants were observed at 3 months of age. The intestine of healthy infants was colonised with higher abundance of commensal Bifidobacterium. Conversely, Klebsiella, an opportunistic pathogen, was significantly enriched in the allergic infants. Interestingly, infants with a high Klebsiella/Bifidobacterium (K/B) ratio (above the population median K/B ratio) at age 3 months had an odds ratio of developing allergy by 3 years of age of 9.00 (95% confidence interval 1.46-55.50) compared to those with low K/B ratio. This study demonstrated a relationship between the ratio of genera Klebsiella and Bifidobacterium during early infancy and development of paediatric allergy in childhood. Our study postulates that an elevated K/B ratio in early infancy could be a potential indicator of an increased risk of allergy development. This line of research might enable future intervention strategies in early life to prevent or treat allergy. Our study provides new insights into microbial signatures associated with childhood allergy, in particular, suggests that an elevated K/B ratio could be a potential early-life microbiota biomarker of allergic disease.


Sign in / Sign up

Export Citation Format

Share Document