scholarly journals TIDAL AREA DISPERSANT EXPERIMENT, SEARSPORT MAINE: AN OVERVIEW

1985 ◽  
Vol 1985 (1) ◽  
pp. 553-559 ◽  
Author(s):  
Edward S. Gilfillan ◽  
David S. Page ◽  
Sherry A. Hanson ◽  
Judith C. Foster ◽  
Janet Hotham ◽  
...  

ABSTRACT On August 19, 1981, two test spills of Murban crude oil were carried out in Long Cove, Searsport, Maine. One spill was chemically dispersed; the other was not. Measurements were made to make quantitative comparisons of the chemical fates and biological effects of the two spills. Hydrocarbon analyses were carried out on water samples, animal tissue samples, intertidal sediment samples, and subtidal sediment samples. Biological measurements were carried out at the community level, whole animal level, and biochemical level of organization. No significant biological effects attributable to the dispersed oil spill were observed. This lack of effects is, in part, a result of changes in the physical and chemical properties of dispersed oil which help limit its availability and toxicity. The chemical fate and biological effects of the undispersed oil spill were typical of those reported from actual oil spill sites. Oil was incorporated into sediments and animal tissue. On the community level of organization mortality, reduced diversity and evenness, increased population density, and increased dominance by opportunists were all observed immediately after the spill, and up to 1 year later. On the whole animal level of organization, no effects on scope-for-growth were observed in two filter feeding bivalves. On the biochemical level of organization, activities of two sensitive enzyme systems were elevated.

2014 ◽  
Vol 2014 (1) ◽  
pp. 733-746 ◽  
Author(s):  
Adriana C. Bejarano ◽  
Valerie Chu ◽  
Jeff Dahlin ◽  
Jim Farr

ABSTRACT The Deepwater Horizon oil spill revived discussions on the use of dispersants as an oil spill countermeasure. One of the greatest concerns regarding the use of dispersants deals with potential exposure of water column organisms to high concentrations of oil. While toxicity data on dispersants and physically and chemically dispersed oil have been generated for decades under controlled laboratory conditions, the practical use of this information has been limited by the lack of a centralized data repository. As a result, the Dispersant and Chemically Dispersed Oil Toxicity Database (DTox) was created to address that shared need of unrestricted and rapid access to toxicity data. DTox is a quantitative database that gathers existing toxicity data through a careful review and compilation of data extracted from the peer-review and gray literature. Through a rigorously evaluation of the quality of each data source, this database contains pertinent information including species scientific name, life stage tested, dispersant name, exposure type, oil weathering stage, exposure duration, etc. More importantly, this database contains effects concentrations reported on measured or nominal basis. Within the database, each data source is assigned an applicability score based on their relevance to oil spills. Key criteria in the determination of source applicability include exposure type, reported effects concentrations, and reported analytical chemistry. Information in DTox has been further integrated into a user-friendly tool that allows for on-the-fly data searches and data plotting in the form of Species Sensitivity Distributions. To date, +400 papers have been evaluated for potential inclusion into the database, and data extracted from +170 sources. Despite inherent limitations, existing toxicity data are of great value to the oil spill scientific community. Although toxicity data will never be enough to answer all toxicity questions regarding the use of dispersants, this centralized data repository can help inform decisions on dispersant use and can help identify data needs and gaps. The ultimate goal of this tool is its contribution to a better understanding of the biological effects of dispersants and oil in the aquatic environment.


Author(s):  
J. C. Fanning ◽  
J. F. White ◽  
R. Polewski ◽  
E. G. Cleary

Elastic tissue is an important component of the walls of arteries and veins, of skin, of the lungs and in lesser amounts, of many other tissues. It is responsible for the rubber-like properties of the arteries and for the normal texture of young skin. It undergoes changes in a number of important diseases such as atherosclerosis and emphysema and on exposure of skin to sunlight.We have recently described methods for the localizationof elastic tissue components in normal animal and human tissues. In the study of developing and diseased tissues it is often not possible to obtain samples which have been optimally prepared for immuno-electron microscopy. Sometimes there is also a need to examine retrospectively samples collected some years previously. We have therefore developed modifications to our published methods to allow examination of human and animal tissue samples obtained at surgery or during post mortem which have subsequently been: 1. stored frozen at -35° or -70°C for biochemical examination; 2.


2018 ◽  
Vol 75 (6) ◽  
pp. 2117-2128 ◽  
Author(s):  
Samuel P S Rastrick ◽  
Victoria Collier ◽  
Helen Graham ◽  
Tore Strohmeier ◽  
Nia M Whiteley ◽  
...  

Abstract Climate change driven alterations in salinity and carbonate chemistry are predicted to have significant implications particularly for northern costal organisms, including the economically important filter feeders Mytilus edulis and Ciona intestinalis. However, despite a growing number of studies investigating the biological effects of multiple environmental stressors, the combined effects of elevated pCO2 and reduced salinity remain comparatively understudied. Changes in metabolic costs associated with homeostasis and feeding/digestion in response to environmental stressors may reallocate energy from growth and reproduction, affecting performance. Although these energetic trade-offs in response to changes in routine metabolic rates have been well demonstrated fewer studies have investigated how these are affected by changes in feeding plasticity. Consequently, the present study investigated the combined effects of 26 days’ exposure to elevated pCO2 (500 µatm and 1000 µatm) and reduced salinity (30, 23, and 16) on the energy available for growth and performance (Scope for Growth) in M. edulis and C. intestinalis, and the role of metabolic rate (oxygen uptake) and feeding plasticity [clearance rate (CR) and absorption efficiency] in this process. In M. edulis exposure to elevated pCO2 resulted in a 50% reduction in Scope for Growth. However, elevated pCO2 had a much greater effect on C. intestinalis, with more than a 70% reduction in Scope for Growth. In M. edulis negative responses to elevated pCO2 are also unlikely be further affected by changes in salinity between 16 and 30. Whereas, under future predicted levels of pCO2C. intestinalis showed 100% mortality at a salinity of 16, and a >90% decrease in Scope for Growth with reduced biomass at a salinity of 23. Importantly, this work demonstrates energy available for production is more dependent on feeding plasticity, i.e. the ability to regulate CR and absorption efficiency, in response to multiple stressors than on more commonly studied changes in metabolic rates.


2022 ◽  
Vol 20 (4) ◽  
pp. 56-62
Author(s):  
M. A. Ryabova ◽  
M. Yu. Ulupov ◽  
N. A. Shumilova ◽  
G. V. Portnov ◽  
E. K. Tikhomirova ◽  
...  

Aim of the study was to compare the cutting and coagulation properties of 1.56 and 1.94 μm fiber lasers with those of a 0.98 μm semiconductor laser.Materials and methods. A comparative study of the biological effects of 1.56 and 1.94 µm lasers and a 0.98 µm semiconductor laser used in a constant, continuous mode was carried out. The cutting properties of the lasers were evaluated on the chicken muscle tissue samples by the width and depth of the ablation zone formed via a linear laser incision at a speed of 2 mm/s, while the coagulation properties were assessed by the width of the lateral coagulation zone. The zones were measured using a surgical microscope and a calibration slide. For statistical analysis, power values of 3, 5, 7, 9, and 11 W were chosen for each laser wavelength.Results. Analysis of the findings confirmed that laser wavelength had a statistically significant effect on the linear dependence between incision parameters and laser power. It was found that the 1.56 μm fiber laser (water absorption) had a greater coagulation ability but a comparable cutting ability compared with the 0.98 μm laser (hemoglobin absorption). When used in the power mode of 7W or higher, the 1.94 µm laser provided superior cutting performance compared with the 0.98 µm semiconductor laser at the same exposure power. Elevating the power in any of the lasers primarily increased the width of the ablation zone, and to a lesser extent – the crater depth and the width of the lateral coagulation zone. Therefore, in comparison with the 0.98 μm semiconductor laser, higher radiation power in the 1.56 and 1.94 μm lasers mainly influences their cutting properties, expanding the width and depth of the ablation zone, and has a smaller effect on their coagulation ability.Conclusion. The findings of the study showed that the 1.56 and 1.94 μm fiber lasers have better coagulation properties in comparison with the 0.98 μm semiconductor laser. was statistically proven that all incision characteristics (width of the lateral coagulation zone, depth and width of the ablation zone) for the 1.56, 1.94, and 0.98 μm lasers depend on the power of laser radiation. The 1.94 µm laser is superior to the 0.98 µm laser in its cutting properties. 


1987 ◽  
Vol 1987 (1) ◽  
pp. 445-449 ◽  
Author(s):  
Steve K. Alexander ◽  
James W. Webb

ABSTRACT A single spill of crude oil in a salt marsh is generally considered to have limited biological effects. A crude oil spill in Dickinson Bayou (in the Galveston Bay system of Texas) in January 1984 provided the opportunity to test this hypothesis in salt marshes exposed to varying amounts of oil. Growth of Spartina alterniflora was unaffected in light to moderately oiled sediments (less than 5 mg oil/g sediment). However, growth was significantly reduced in sediments with high oil content (5 to 51 mg/g) through 18 months. Erosion of shoreline areas with high oil content was evident by 16 months and continued through 32 months. These results demonstrate the adverse effect of high concentrations of crude oil in salt marsh sediments. Each crude oil spill must be evaluated individually with regard to the likelihood of significant accumulation of oil in sediments before a decision is made regarding a cleanup response.


1981 ◽  
Vol 1981 (1) ◽  
pp. 263-268
Author(s):  
Joseph Buckley ◽  
David Green ◽  
Blair Humphrey

ABSTRACT Three experimental oil spills of 200, 400, and 200 litres (l) were conducted in October, 1978, in a semiprotected coastal area on Canada's west coast. The surface slicks were restrained with a Bennett inshore oil boom. The spilled oil was chemically dispersed using Corexit 9527, applied as a 10-percent solution in sea water and sprayed from a boat. The dispersed oil was monitored fluorometrically for some hours. Surface and dispersed oil were sampled for chemical analysis. The highest recorded concentration of dispersed oil was 1 part per million (ppm). After a short time (30 minutes), concentrations around 0.05 ppm were normal, decreasing to background within 5 hours. The concentrations were low compared to those expected for complete dispersion which, as visual observation confirmed, was not achieved. The dispersed oil did not mix deeper into the water column with the passage of time, in contrast to predicted behaviour and in spite of the lack of a significant vertical density gradient in the sea water. This was attributed to the buoyancy of the dispersed oil droplets and the limited vertical turbulence in the coastal locale of the experiment. The integrated quantity of oil in the water column decreased more rapidly than either the mean oil concentration of the cloud or the maximum concentration indicating that some of the dispersed oil was rising back to the surface. The surfacing of dispersed oil was confirmed visually during the experiment. The mixing action of the spray boat and breaker boards apparently created large oil droplets that did not form a stable dispersion. Horizontal diffusion of the dispersed oil was initially more rapid than expected, but the rate of spreading did not increase with time as predicted. The results imply that the scale of diffusion was larger than the scale of turbulence which again can be attributed to the locale of the experiment.


2003 ◽  
Vol 2003 (1) ◽  
pp. 341-345
Author(s):  
Don Aurand ◽  
James Clark ◽  
Robin Jamail

ABSTRACT This project defines circumstances where a dispersant demonstration might be considered for an estuarine oil spill in Texas. In seeking approval for a spill of opportunity demonstration project, we developed criteria defining a viable dispersant response for consideration by the Region VI Regional Response Team. This paper presents the criteria and their rationale developed for Galveston Bay and Corpus Christi Bay, along with the results of recent training exercises. The criteria define the size and general location of an oil spill that might be considered appropriate for a trial dispersant application, and implementation of response and monitoring within a 2-hour window from notification. They are based on descriptions and characterizations of the habitats and species at risk in coastal areas, concentration and duration of dispersed oil plumes that might be generated in a response, potential impacts of these exposures, and the environmental trade-off between implementing mechanical response and a dispersant response. Because the dilution potential is constrained in shallow water environments, spill size has significant impact on the magnitude and duration of potential exposure regimes for water column organisms. Spills of 250 bbls or less pose minimal concern for water column communities with potential net benefit to other coastal resources. The trade-offs were not so obvious for larger spills. The exposure regimes and potential impacts for water-column organisms that would be maximally exposed during a dispersant operation were compared to the exposures and potential impacts for organisms and habitats exposed to floating oil and oil stranded on shorelines, at levels that could result during a mechanical recovery operation. These potential impacts are compared on a spatial and temporal basis, and with consideration for potential rates of recovery.


2014 ◽  
Vol 2014 (1) ◽  
pp. 1215-1225 ◽  
Author(s):  
Haibo Niu ◽  
Kenneth Lee ◽  
Michel C. Boufadel ◽  
Lin Zhao ◽  
Brian Robinson

ABSTRACT The expansion of offshore oil and gas and marine transport activities in the Arctic have raised the level of risk for an oil spill to occur in the Arctic region. Existing technologies for oil spill cleanup in ice-covered conditions are limited and there is a need for improved oil spill countermeasures for use under Arctic conditions. A recent field study has assessed a proposed oil spill response technique in ice-infested waters based on the application of fine minerals in a slurry with mixing by propeller-wash to promote the formation of oil-mineral aggregates (OMA). While it was verified in the experimental study that the dispersion was enhanced and mineral fine additions promoted habitat recovery by enhancing both the rate and extent of oil biodegradation, limited monitoring data provide little insights on the fate of dispersed oil after the response. To help understand the oil transport process following mineral treatment in ice-covered conditions, mathematical modeling was used in this study to simulate the transport of OMA and calculate the mass balances of the spilled oil. To study the effects of ice and minerals on the fate and transport, the result was compared with scenarios without ice and without the addition of mineral fines. The results show general agreement between the modeling results and field observations, and further confirm the effectiveness and potential for using mineral treatment as a new oil spill counter-measure technology. This technique offers several operational advantages for use under Arctic conditions, including reduced number of personnel required for its application, lack of need for waste disposal sites, and cost effectiveness.


2015 ◽  
Vol 105 ◽  
pp. 8-19 ◽  
Author(s):  
Marianne Frantzen ◽  
Bjørn Henrik Hansen ◽  
Perrine Geraudie ◽  
Jocelyn Palerud ◽  
Inger-Britt Falk-Petersen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document