scholarly journals Removal of Pharmaceutical Residues from Wastewater using Activated Carbon from Rice Husks

Author(s):  
P. Kahara ◽  
A. Gachanja ◽  
J. Kiptoo ◽  
G. Nyaga

The presence of pharmaceutical residues in discharges that end up in rivers is a growing concern for the disruption of aquatic ecosystems and human health. The risk of exposure to these medical wastes becomes greater because they are not biodegradable even after sewage treatment. This study aimed to remove trimethoprim (antibiotic), paracetamol (painkiller), and nevirapine (anti-retroviral) from wastewater using activated carbon made from rice husks, an agricultural waste that was investigated as a potential adsorbent. The instrument used for analysis was a liquid chromatography-tandem mass spectrometer (LC-MS/MS). The powdered carbon of rice husks was carbonated at a temperature of 500oC and then activated by phosphoric acid to increase its porosity. After activation, it was successfully characterized by the use of Scanning electron microscopy which showed irregular cavities with open fine pores. Fourier transform infrared showed different functional groups which determined adsorbent- adsorbate interactions while X-ray diffraction revealed amorphous particle arrangement. The effects of the adsorbent dose, contact time, pH, and initial drug concentration were studied. Freundlich and Langmuir's isotherms were used in the evaluation of adsorption phenomena. Thus, obtained results showed that rice husks activated carbon is an effective adsorbent.

2014 ◽  
Vol 69 (11) ◽  
pp. 2372-2380 ◽  
Author(s):  
Mats Ek ◽  
Christian Baresel ◽  
Jörgen Magnér ◽  
Rune Bergström ◽  
Mila Harding

Pharmaceutical residues, which pass naturally through the human body into sewage, are in many cases virtually unaffected by conventional wastewater treatment. Accumulated in the environment, however, they can significantly impact aquatic life. The present study indicates that many pharmaceutical residues found in wastewater can be removed with activated carbon in a cost-efficient system that delivers higher resource utilisation and security than other carbon systems. The experiment revealed a substantial separation of the analysed compounds, notwithstanding their relatively high solubility in water and dissimilar chemical structures. This implies that beds of activated carbon may be a competitive alternative to treatment with ozone. The effluent water used for the tests, performed over 20 months, originated from Stockholm's largest sewage treatment plant. Passing through a number of different filters with activated carbon removed 90–98% of the pharmaceutical residues from the water. This paper describes pilot-scale tests performed by IVL and the implications for an actual treatment plant that has to treat up to several thousand litres of wastewater per second. In addition, the advantages, disadvantages and costs of the method are discussed. This includes, for example, the clogging of carbon filters and the associated hydraulic capacity limits of the activated carbon.


2010 ◽  
Vol 12 (2) ◽  
pp. 151 ◽  
Author(s):  
K.K. Kudaybergenov ◽  
E.K. Ongarbayev ◽  
Z.A. Mansurov

<p>Mechanical recovery of oil by oil sorbents is one of the most important countermeasures in marine oil-spill response. The preparation of oil-sorbents from agricultural waste increases economic return and reduces pollution. The sorption capacities of the carbonized rice husks and the apricot stone compared in relation to different petroleum products. Sorption capacity showed strong dependence on the particle size of sorbent and oil film thickness. The phase composition, microstructure and morphology of the composite material C/SiO<sub>2</sub>, prepared by carbonize of rice husks were investigated by X-ray diffraction analysis, FTIR spectrometry and scanning election microscope<em> </em>(SEM).</p>


1987 ◽  
Vol 19 (3-4) ◽  
pp. 471-482 ◽  
Author(s):  
W. J. Weber ◽  
B. E. Jones ◽  
L. E. Katz

The addition of powdered activated carbon (PAC) to activated sludge treatment systems to enhance removal of specific toxic organic compounds from wastewater was evaluated. Nine organic compounds encompassing a range of solubility, volatility, biodegradability, and adsorptive properties were studied. Kate and equilibrium investigations were conducted to quantify the removal mechanisms of volatilization, biodegradation, biosorption, and carbon adsorption. Results from steady-state bioreactor studies showed that the addition of less than 100 mg/ℓ powdered activated carbon to the influent did not enhance the removal of the biodegradable target compounds investigated: benzene, toluene, ethylbenzene, o-xylene, chlorobenzene, and nitrobenzene. Significantly improved removals of the poorly degradable and non-biodegradable compounds 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, and lindane occurred at influent powdered carbon concentrations in the 12.5 to 25 mg/ℓ range. Influent powdered carbon concentrations of 100 mg/ℓ effected overall removals of greater than 90%. The addition of powdered activated carbon not only reduced effluent concentrations but also reduced the amounts of the volatile compounds stripped to the atmosphere.


2013 ◽  
Vol 68 (5) ◽  
pp. 1151-1157 ◽  
Author(s):  
Dongkai Zhou

Biofilms on fiber-based carriers have attracted much concern in wastewater treatment processes recently. In this study: (1) a novel sandwich structure fiber-based biofilm carrier was produced, which consisted of an inner core composed of polyacrylonitrile-based activated carbon fiber felt (PAN-ACFF) and an outer coat made of polyester reticular cloth with polypropylene fiber loops; (2) the novel carrier was filled in a step-feeding pilot-scale modified University of Cape Town process (MUCT) for sewage treatment; the MUCT contained a series of pre-anoxic/anaerobic/anoxic-1/anoxic-2/oxic tanks, wherein nitrification liquor was recycled to the anoxic-2 tank and an extra liquor return from the anoxic-1 to the pre-anoxic tank was set up; and (3) the removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were continuously tested for two periods as operational parameters alternated. The optimum values were collected in Period II, when the influent loads were 2,100.6 ± 120.3 gCOD/(d m3), 205.5 ± 20.4 gTN/(d m3), 39.9 ± 3.9 gTP/(d m3), the removal percentages were 93.1 ± 1.1% of COD, 39.4 ± 3.5% of TN, and 84.6 ± 3.4% of TP. For COD, NH4+-N, and TP, the specific removal loads of filler were 291.5 ± 18.2, 22.9 ± 3.1, 4.8 ± 0.5 (g d)/kg.


2007 ◽  
Vol 336-338 ◽  
pp. 1914-1917
Author(s):  
Lei Yang ◽  
Zhen Yi Zhang ◽  
Xiao Shan Ning ◽  
Guang He Li

In this paper, a novel and highly efficient hydroxyapatite (HA) carrier for cultivating hydrocarbon degradation bacteria (HDB) is introduced. The HA particles synthesized through a sol-gel method and different heat treatments were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and BET method. The microbial amount and activities of HDB cultivated on HA carriers were quantitatively investigated in order to assess their enriching capabilities. The results showed that HA synthesized at 550°C and the one without calcination could enrich HDB 3 and 2 magnitude orders more than the activated carbon, respectively. Mechanisms of bacterial enrichment on HA and activated carbon were also studied, and it is believed that the high bioactivity and the surface morphology of HA were responsible for the efficient reproduction of HDB. It is concluded that HA is a potential candidate to replace the conventionally used activated carbon as a novel carrier applied in the filed of bioremediation for oil contaminated soil.


2021 ◽  
Author(s):  
Emmanuel Ayodele ◽  
Victoria Ezeagwula ◽  
Precious Igbokwubiri

Abstract Bamboo trees are one of the fastest growing trees in tropical rainforests around the world, they have various uses ranging from construction to fly ash generation used in oil and gas cementing, to development of activated carbon which is one of the latest uses of bamboo trees. This paper focuses on development of activated carbon from bamboo trees for carbon capture and sequestration. The need for improved air quality becomes imperative as the SDG Goal 12 and SDG Goal13 implies. One of the major greenhouse gases is CO2 which accounts for over 80% of greenhouse gases in the environment. Eliminating the greenhouse gases without adding another pollutant to the environment is highly sought after in the 21st century. Bamboo trees are mostly seen as agricultural waste with the advent of scaffolding and other support systems being in the construction industry. Instead of burning bamboo trees or using them for cooking in the local communities which in turn generates CO2 and fly ash, an alternative was considered in this research work, which is the usage of bamboo trees to generate activated, moderately porous and high surface area carbon for extracting CO2 from various CO2 discharge sources atmosphere and for water purification. This paper focuses on the quality testing of activated carbon that can effectively absorb CO2. The porosity, pore volume, bulk volume, and BET surface area were measured. The porosity of the activated carbon is 27%, BET surface area as 1260m²/g. Fixed carbon was 11.7%, Volatility 73%, ash content 1.7%.


2022 ◽  
Author(s):  
Sunita Kumari ◽  
Dhirendra Singhal ◽  
Rinku Walia ◽  
Ajay Rathee

Abstract The present project proposes to utilize rice husk and maize cob husk ash in the cement to mitigate the adverse impact of cement on environment and to enhance the disposal of waste in a sustainable manner. Ternary concrete / MR concrete was prepared by using rise husk and maize cob ash with cement. For the present project, five concrete mixes MR-0 (Control mix), MR-1 (Rice husk ash 10% and MR-2.5%), MR-2 (Rice husk ash 10% and MR-5%), MR-3 (Rice husk ash 10% and MR-2.5%), MR-4 (Rice husk ash 10% and MR-2.5%) were prepared. M35 concrete mix was designed as per IS 10262:2009 for low slump values 0-25mm. The purpose is to find the optimum replacement level of cement in M35 grade ternary concrete for I – Shaped paver blocks.In order to study the effects of these additions, micro-structural and structural properties test of concretes have been conducted. The crystalline properties of control mix and modified concrete are analyzed by Fourier Transform Infrared Spectroscope (FTIR), Scanning Electron Microscopy (SEM), and X-Ray Diffraction (XRD). The results indicated that 10% Rice husk ash and 5% maize cob ash replaced with cement produce a desirable quality of ternary concrete mix having good compressive strength. The results of SEM analysis indicated that the morphology of both concrete were different, showing porous structure at 7 days age and become unsymmetrical with the addition of ashes. After 28 day age, the control mix contained more quantity of ettringite and became denser than ternary concrete. XRD analysis revealed the presence of portlandite in large quantity in controlled mix concrete while MR concrete had the partially hydrated particle of alite.


2021 ◽  
Author(s):  
Amalanathan.M ◽  
Aravind.M ◽  
Sony Michael Mary.M ◽  
Razan A. Alshgari ◽  
Asma A. Alothman ◽  
...  

Abstract In this work, jasmine flower derived activated carbon were successfully synthesized by hydrothermal carbonization process at the different annealing temperature. The Crystallinity, phase, structural, morphological and optical properties of activated carbon were investigated using X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), and UV-visible spectroscopy analysis. The graphitic phase of carbon was obtained from the XRD pattern. Surface morphology reveals irregular-shaped nanoparticles. The photodegradation of methylene blue (MB) was carried out under the visible light irradiation technique to study its photocatalytic activity. The activated carbon obtained at 400oC, 500oC and 600oC shows a photocatalytic degradation efficiency of 86%, 90%, and 94%, respectively. Antibacterial activity of activated carbon was examined against S. Aureus (MTCC-737) and E-Coli (MTCC- 443) microbial pathogens, and their potent antibacterial activity was examined from the zone of inhibition layer.


2014 ◽  
Vol 699 ◽  
pp. 221-226
Author(s):  
Nurul Hanim Razak ◽  
Md. Razali Ayob ◽  
M.A.M. Zainin ◽  
M.Z. Hilwa

Eggshells and rice husk, two types of notable agricultural waste were used as bioadsorbent to remove Methylene Blue dye (MBD) in aqueous solution. This study was to investigate the performance of these two bioadsorbents in removing MBD. The removal percentage, adsorption capacity, and porosity characterization were examined. The method applied was a physical filtration. UV-VIS Spectrophotometer was used to determine the efficiency of the bioadsorbents in MBD adsorption. The highest removal percentage at the most concentrated MBD were 51% and 98% for eggshells and rice husks respectively. Meanwhile the characterization of rice husks pore size and volume proves that higher adsorptivity towards dye compares to eggshells porosity. It was concluded that the eggshells and rice husks bioadsorbents was successful to treat industrial textile wastewater with rice husks as the most efficient bioadsorbent in removing MBD.


Sign in / Sign up

Export Citation Format

Share Document