scholarly journals Enhanced Ball Shear Testing Configuration For Substrate LGA Sensor Devices

Author(s):  
Richard G. Mariano ◽  
Marciano M. Maniebo ◽  
Frederick Ray I. Gomez

Semiconductor assembly mass production environment has means of testing and verifying bond consistency and reliability during wire bonding. Common bond integrity assessment is ball shear testing (BST). This test enables analysis of the strength between the bond pad and a ball bond. This paper presents significant procedure on how ball shear testing parameters should be treated during wirebond integrity check. Device complexity in terms of performing ball shear testing specifically on sensor dice has different output responses. Frequent shearing on die resulted as bond pads are elevated by 30 µm (microns). To address manufacturing in-process controls challenges, shearing tool position, dage settings, and optical scopes are taken into consideration. Also, a study was performed on the execution correctness in combination with proper dage parameters was explored to meet good ball shear test process capability and break modes.

2017 ◽  
Vol 2017 (1) ◽  
pp. 000432-000437 ◽  
Author(s):  
Michael David Hook ◽  
Michael Mayer ◽  
Stevan Hunter

Abstract Reliability of wire bonds made with palladium-coated copper (PCC) wire of 25 μm diameter is studied by measuring the wire bond resistance increase over time in high temperature storage at 225 °C. Ball bonds are made on two bond pad thicknesses and tested with and without mold compound encapsulation. Bond pads are aluminum copper (Al-0.5%Cu), 800 nm and 3000 nm thick. The wirebonding pattern is arranged to facilitate 4-wire resistance measurements of 12 bond pairs in each 28-pin ceramic test package. The ball bonding recipe is optimized to minimize splash on 3000 nm Al-0.5%Cu with shear strength at least 120 MPa. Ball bond diameter is 61 μm and height is 14 μm. Measurements include bond shear test data and in-situ resistance before and during high temperature storage. Bonds on 3000 nm pads are found to be significantly more reliable than bonds on 800 nm pads within 140 h of aging.


Author(s):  
Jeffery Lo ◽  
Dennis Lau ◽  
S. W. Ricky Lee ◽  
Simon Chan ◽  
Frank Chan ◽  
...  

The solder ball shear test is a commonly used method to evaluate the attachment strength of solder balls. However, some previous studies indicated that the solder ball shear test may not be suitable for showing the effect of intermetallic compound (IMC) growth due to thermal aging. This is because the IMC layer is thin and not susceptible to the shear loading. Since the IMC layer consists of brittle materials, the ball pull test should be a better method to evaluate the solder ball attachment strength. The major challenge of conducting a solder ball pull test is how to grip the solder ball. This paper presents an innovative method for conducting the solder ball pull test. A shape memory alloy (SMA) tube is used to grip the solder ball and pull it off from the substrate. The inner diameter of the SMA tube is originally smaller than the diameter of the solder ball under testing. Once the temperature is raised to higher than the switching temperature of SMA, the SMA tube will expand radially, resulting an inner diameter larger than the solder ball. After the SMA tube cools down, the tube contracts and grips the solder ball firmly. The solder ball can then be pulled off from the attached substrate by frictional force. A prototype of the aforementioned solder ball pull test device has been developed. Some preliminary testing results are presented in this paper.


Author(s):  
Fubin Song ◽  
S. W. Ricky Lee

The present study is aimed at evaluating the effect of ball shear tool wear and fixture rigidity on ball shear and ball pull tests respectively. In particular, the emphasis is placed on understanding the progressive failure mechanism during the ball shear test. The location of crack initiating is investigated on two kinds of shear tool with different wear features. In this paper, the experimental investigation is presented. Specimens with PBGA solder balls are fabricated and a series of ball shear and pull tests are conducted. In the shear test, the shear tool is stopped at a certain stage during test, and then the specimens are inspected by SEM. The failure modes and location of cracks are characterized. From the ball attachment strength and crack location of the ball shear test, no significant difference is found between the shear tools with different wear features. For investigating the effect of fixture rigidity on the ball pull test, two kinds of PBGA package with different sizes was fixed on the fixtures with and without gluing on a rigid plate. The failure modes and ball pull strength with different fixture rigidity were compared. The test results indicate that more brittle failures are found on the specimens without gluing on the rigid plate during the ball pull test, both on two kinds of package with different sizes. In addition, the data scattering of ball pull strength is large on the case without gluing on rigid plate.


2009 ◽  
Vol 38 (12) ◽  
pp. 2489-2495 ◽  
Author(s):  
Sang-Su Ha ◽  
Jin-Kyu Jang ◽  
Sang-Ok Ha ◽  
Jong-Woong Kim ◽  
Jeong-Won Yoon ◽  
...  

2015 ◽  
Vol 27 (4) ◽  
pp. 129-136 ◽  
Author(s):  
Hui Yuen Peng ◽  
Mutharasu Devarajan ◽  
Teik Toon Lee ◽  
David Lacey

Purpose – The purpose of this paper is to investigate the efficiencies of argon (Ar), oxygen (O2) and O2 followed by Ar (O2→Ar) plasma treatments in terms of contaminant removal and wire bond interfacial adhesion improvement. The aim of this study is to resolve the “lifted ball bond” issue, which is one of the critical reliability checkpoints for light emitting diodes (LEDs) in automotive applications. Design/methodology/approach – Ar, O2 and O2→Ar plasma treatments were applied to LED chip bond pad prior to wire bonding process with different treatment durations. Various surface characterization methods and contact angle measurement were then used to characterize the surface properties of these chip bond pads. To validate the improvements of Ar, O2 and O2→Ar plasma treatments to the wire bond interfacial adhesion, the chip bond pads were wire bonded and examined with a ball shear test. Moreover, the contact resistance of the wire bond interfaces was also measured by using four-point probe electrical measurements to complement the interfacial adhesion validation. Findings – Surface characterization results show that O2→Ar plasma treatment was able to remove the contaminant while maintaining relatively low oxygen impurity content on the bond pad surface after the treatment and was more effective as compared with the O2 and Ar plasma treatments. However, O2→Ar plasma treatment also simultaneously reduced high-polarity bonds on the chip bond pad, leading to a lower surface free energy than that with the O2 plasma treatment. Ball shear test and contact resistance results showed that wire bond interfacial adhesion improvement after the O2→Ar plasma treatment is lower than that with the O2 plasma treatment, although it has the highest efficiency in surface contaminant removal. Originality/value – To resolve “lifted ball bond” issue, optimization of plasma gas composition ratios and parameters for respective Ar and O2 plasma treatments has been widely reported in many literatures; however, the O2→Ar plasma treatment is still rarely focused. Moreover, the observation that wire bond interfacial adhesion improvement after O2→Ar plasma treatment is lower than that with the O2 plasma treatment although it has the highest efficiency in surface contaminant removal also has not been reported on similar studies elsewhere.


2005 ◽  
Vol 486-487 ◽  
pp. 269-272 ◽  
Author(s):  
Jong Woong Kim ◽  
Sun Kyu Park ◽  
Seung Boo Jung

Ball shear test was investigated in terms of the effects of important test parameter, i.e., shear height, with an experimental and non-linear finite element analysis for evaluating the solder joint integrity of area array packages. The substrate was a common SMD type with solder bond pad openings of 460 ㎛ in diameter. It was observed that increasing the shear height, at a fixed shear speed, has the effect of decreasing the shear force. The high shear height could cause some bad effects on the test results such as unexpected high standard deviation values or shear tip sliding from the solder ball surface. The low shear height conditions were favorable for screening the type of brittle interfacial fractures or the degraded layers in the interfaces.


2005 ◽  
Vol 297-300 ◽  
pp. 2864-2869 ◽  
Author(s):  
Ikuo Shohji ◽  
Hiroki Goto ◽  
Kiyotomo Nakamura ◽  
Toshikazu Ookubo

An influence of a surface finish of a Cu electrode on joint properties of a lead-free solder joint with Sn-3mass%Ag-0.5mass%Cu has been investigated. As the surface treatment method, Ni/Au electroplating, Au electroplating and organic solderability preservative (OSP) treatments were conducted to Cu electrodes. A heat exposure treatment was conducted at 150°C up to 500h in order to investigate the reliability of the solder joint under heat exposure conditions. Ball shear test was performed to examine joint strength. Microstructural observation was conducted to investigate growth kinetics of a reaction layer formed at a joint interface and microstructural revolution in the solder layer.


Sign in / Sign up

Export Citation Format

Share Document