scholarly journals Antibacterial Activity of Saponin Extracted from Phyllanthus niruri on Methicillin-Resistant Staphylococcus aureus (MRSA)

Author(s):  
V. A. Ajibade ◽  
V. O. Oluwasusi ◽  
M. F. Ibiyemi ◽  
O. A. Ajenifuja ◽  
O. Famurewa

The antimicrobial activity of saponin extracted from Phyllanthus niruri was investigated on methicillin-resistant Staphylococcus aureus (MRSA). The nuclear magnetic resonance (NMR) was used to determine the structure spectra of the extracted purified saponin. The 13carbon NMR predicted on the basis of chemical shift that appeared in the resonances of 20 – 60 ppm gave a structure named Phylagenin-13-O-α-D-glucopyranoside and Phylagenin-25-O-β-D-glucopyra-noside. The susceptibility profile of MRSA determined by the agar-diffusion method showed that 97.0% and 90.0% of the test bacterium were resistant to Tetracycline and Cotrimoxazole respectively and 60% of the bacterium was susceptible to saponin extract. The ability of saponin extracted from P. niruri to treat clinical manifestation like chest congestion and skin desquamation from which S. aureus resistant to conventional antibiotics have been isolated has been confirmed in this study. The fact that this extract exerted an inhibitory effect on MRSA indicates that they can potentially be further developed into antimicrobial clinically used agents.

Author(s):  
SUNDAR MADASAMY ◽  
SURESH SUNDAN ◽  
LINGAKUMAR KRISHNASAMY

Objective: A simple formulation of cold cream from methanolic extract Caralluma adscendens var. attenuata (MECA) and their antimicrobial activity was tested against various clinical pathogens, namely, Escherichia coli, methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and Candida albicans. Methods: Methanol extract of these plant extract was prepared by the Soxhlet method. We analyzed phytochemical nature of theses plant, and subsequently, a cream was formulated cold-cream C. adscendens var. attenuata (FCA) different concentration such as FCA 50 mg, FCA 100 mg, and FCA 200 mg. In the present study, aimed to the antimicrobial activity of cold cream was measured by agar well diffusion method, and standard antibiotic Neosporin (market available) cream was used as positive control and dummy cold cream (without-MECA) were used as the negative control. Results: Phytochemical screening showed that the plant extracts were found a rich source of secondary metabolites. For more, the efficacy of cold cream from MECA extracts to against the clinical pathogen. Positive control Neosporin and 200 mg FCA cream was a highly significant difference in the zone of inhibition when compared to dummy cream. The 200 mg FCA was activity against Escherichia coli, methicillin-resistant Staphylococcus aureus, vancomycin-resistant E. faecium, and C. albicans highly significantly difference (p<0.05) compared FCA 50 mg and FAC 100 mg creams. Conclusion: The results from this study suggested that the cold cream form base of MECA crude had antimicrobial activity in the different clinical pathogen. They could be used as an alternative source to conventional antimicrobial agents for the treatment of pathological infection.


2021 ◽  
pp. 32-40
Author(s):  
S. D. Kugaperumal ◽  
R. D. De Silva ◽  
T. D. Karunarathne ◽  
C. P. Gunasekara ◽  
D. N. A. W. Samarakoon

Methicillin Resistant Staphylococcus aureus (MRSA) and multidrug-resistant Acinetobacter baumanii are known to cause delayed healing of infections in both acute and chronic wounds. Plants are a natural source of novel antimicrobials and many new drugs are derived from plants, as plants contain phytochemicals that have antimicrobial activity. Sri Lanka is a tropical country with a wide variety of plant species, many of which were identified as possessing medicinal qualities and have been used by traditional medicinal practitioners in the treatment of various diseases and ailments. Dressings made of Rhipsalis baccifera and Drymoglossum piloselloides have been used to treat wounds by Sri Lankan traditional medicine practitioners. This study determined the antibacterial activity of aqueous and methanol extracts of R. baccifera and D. piloselloides against MRSA and Multidrug-resistant A. baumanii. Aqueous and methanolic extractions of both plants were done by maceration. Their antibacterial properties were checked against MRSA and A. baumanii by the well diffusion method. The effectiveness of the extract was further tested against factors like temperature and storage time. R. baccifera (aqueous extract) exhibited antimicrobial properties against MRSA but no activity against A. baumanii. The antibiotic activity against MRSA was increased after two months of storage at 4°C. D. piloselloides exhibited no antibiotic activity against both MRSA and A. baumanii. The methanolic extracts did not demonstrate any antibacterial activity.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1692
Author(s):  
Jennifer Balcucho ◽  
Diana M. Narváez ◽  
Jinneth Lorena Castro-Mayorga

One of the major health problems linked to methicillin-resistant Staphylococcus aureus (MRSA) is severe diabetic foot ulcers (DFU), which are associated with hospital-acquired infections, lower limb amputations and emerging resistance to the current antibiotics. As an alternative, this work aims to develop a biodegradable and biocompatible material with antimicrobial capacity to prevent DFU. This was achieved by producing active polymeric films with metallic nanoparticles dispersed through a polycaprolactone (PCL) dressing. First, the antimicrobial activity of copper oxide nanoparticles (CuONPs) was tested by the microdilution method, selecting the lowest concentration that has an inhibitory effect on MRSA. Then, active PCL films were prepared and characterized in terms of their physicochemical properties, antimicrobial performance, cytotoxicity, genotoxicity and hemocompatibility. Active films had chemical and thermal properties like the ones without the antimicrobial agents, which was confirmed through FTIR, Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) analysis. In relation to antimicrobial activity, active PCL films inhibited MRSA growth when treated with CuONPs at a concentration of 0.07% (w/w). After exposure to the active film extracts, human foreskin fibroblast cells (ATCC® SCRC1041™) (HFF-1) exhibited a cell viability average above 80% for all treatments and no DNA damage was found. Finally, PCL films with 0.07% (w/w) CuONPs proved to be hemocompatible, and none of the films evaluated had red blood cell breakage greater than 5%, being within the acceptable limits established by the International Organization for Standardization ISO 10993-4:2002.


2021 ◽  
Vol 11 (7) ◽  
pp. 3206
Author(s):  
Lorina I. Badger-Emeka ◽  
Promise Madu Emeka ◽  
Hairul Islam M. Ibrahim

Methicillin-resistant Staphylococcus aureus (MRSA) infection is detrimental to hospitalized patients. With diminishing choices of antibiotics and the worry about resistance to colistin in synergistic combined therapy, there are suggestions for the use of herbal derivatives. This investigation evaluated the synergistic effects of Nigella sativa (NS) in combination with beta-lactam (β-lactam) antibiotics on extreme drug-resistant (XDR) MRSA isolates. NS concentrations of 10, 7.5, 5.0, 2.5, 1.0, and 0.1 µg/mL, alone and in combination with β-lactam antibiotics, were used to determine the antimicrobial susceptibility of MRSA isolates by the well diffusion method. Time–kill assays were performed using a spectrophotometer, with time–kill curves plotted and synergism ascertained by the fractional inhibitory concentration (FIC). Scanning and transmission electron microscopy were used to gain insight into the mechanism of action of treated groups. Isolates were inhibited by the NS concentrations, with differences in the zones of inhibition being statistically insignificant at p < 0.05. There were statistically significant differences in the time–kill assay for the MRSA isolates. In addition, NS combined with augmentin showed better killing than oxacillin and cefuroxime. The mechanism of action shown by the SEM and TEM results revealed cell wall disruption, which probably created interference that led to bacterial lysis.


2021 ◽  
Vol 22 (5) ◽  
pp. 2752
Author(s):  
Shu Wang ◽  
Ok-Hwa Kang ◽  
Dong-Yeul Kwon

Methicillin-resistant Staphylococcus aureus (MRSA) is a major nosocomial pathogen worldwide and has acquired multiple resistance to a wide range of antibiotics. Hence, there is a pressing need to explore novel strategies to overcome the increase in antimicrobial resistance. The present study aims to investigate the efficacy and mechanism of plant-derived antimicrobials, trans-cinnamaldehyde (TCA) in decreasing MRSA’s resistance to eight conventional antibiotics. A checkerboard dilution test and time–kill curve assay are used to determine the synergistic effects of TCA combined with the antibiotics. The results indicated that TCA increased the antibacterial activity of the antibiotics by 2-16-fold. To study the mechanism of the synergism, we analyzed the mecA transcription gene and the penicillin-binding protein 2a level of MRSA treated with TCA by quantitative RT-PCR or Western blot assay. The gene transcription and the protein level were significantly inhibited. Additionally, it was verified that TCA can significantly inhibit the biofilm, which is highly resistant to antibiotics. The expression of the biofilm regulatory gene hld of MRSA after TCA treatment was also significantly downregulated. These findings suggest that TCA maybe is an exceptionally potent modulator of antibiotics.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1094
Author(s):  
Melissa M. Cadelis ◽  
Soeren Geese ◽  
Benedict B. Uy ◽  
Daniel R. Mulholland ◽  
Shara J. van de Pas ◽  
...  

Antimicrobial bioassay-guided fractionation of the endophytic fungi Neofusicoccum australe led to the isolation of a new unsymmetrical naphthoquinone dimer, neofusnaphthoquinone B (1), along with four known natural products (2–5). Structure elucidation was conducted by nuclear magnetic resonance (NMR) spectroscopic methods, and the antimicrobial activity of all the natural products was investigated, revealing 1 to be moderately active towards methicillin-resistant Staphylococcus aureus (MRSA) with a minimum inhibitory concentration (MIC) of 16 µg/mL.


2019 ◽  
Vol 6 ◽  
pp. 59-62
Author(s):  
Ranjana K.C. ◽  
Ganga Timilsina ◽  
Anjana Singh ◽  
Supriya Sharma

Objectives: To isolate methicillin resistant Staphylococcus aureus (MRSA) from anterior nares of dairy workers and dairy products and assess the antibiotic susceptibility pattern of the isolates. Methods: Swab samples collected from anterior nares of dairy workers and dairy product (butter) were inoculated into mannitol salt agar and incubated at 37ºC for 24 hours. Identification was done based on colony characteristics, Gram's staining, catalase, oxidase and coagulase test. Antibiotic susceptibility testing was done by modified Kirby Bauer disc diffusion method. MRSA was confirmed by using cefoxitin disc. Results: A total of 109 S. aureus (98 from dairy workers and 11 from butter samples) were isolated. Out of them 32 MRSA were isolated from dairy workers and 4 from butter samples. The association between age group and MRSA was found insignificant (p = 0.115). The association of MRSA between male and female workers was found significant (>0.05). About 86% of the MRSA isolates were susceptible to Gentamicin (86.11%) followed by Ciprofloxacin (77.78%). Conclusion: Detection of MRSA among dairy workers and dairy products warrants proper handling and adequate control measures to prevent transmission of MRSA from dairy industry.


Sign in / Sign up

Export Citation Format

Share Document