scholarly journals Platelet Rich Plasma - Platelet Counts and Application - A Literature Review

Author(s):  
P. Kalyani ◽  
G. Kaarthikeyan ◽  
M. P. Santhosh Kumar

Platelet rich plasma (PRP) is a novel method of using plasma concentrated with platelets for wound healing and tissue regeneration. Platelet rich plasma is prepared from the venous blood using a differential centrifugation technique. It involves a separation spin and a concentration spin, yielding platelet rich plasma. PRP products have been classified into 4 types depending upon major cell constituent and fibrin density upon activation. These are as follows: Pure PRP, Leukocyte and PRP, Pure PRF, Leukocyte and PRF. PRF differs from PRP in that it is rich in a high density fibrin network after activation. PRP is abundant in a variety of growth factors such as VEGF, PDGF, TGF, EGF, and Interleukin-1. Literature consists of reports by different authors about the platelet yield of PRP centrifuged by different systems. A number of factors have also been quoted to influence the platelet concentration in platelet rich plasma. Hence, the aim of this review is to discuss the platelet concentration in PRP centrifuged by different systems and to observe for variations if any.

2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Livia Camargo Garbin ◽  
C. Wayne McIlwraith ◽  
David D. Frisbie

Abstract Background Platelet-rich plasma (PRP) as well as other platelet-derived products have been used as a potential disease-modifying treatment for musculoskeletal diseases, such as osteoarthritis (OA). The restorative properties of such products rely mainly on the high concentrations of growth factors, demonstrating encouraging results experimentally and clinically. Yet, the autologous blood-derived nature of the PRP product lead to limitations that precludes it’s widespread use. The main limitations for PRP use are; product variability, the need for minimum laboratory settings in most cases, and the need for storage at low temperatures to preserve its properties. Based on these limitations, the objective of this study was to investigate an allogeneic off-the-shelf platelet lysate (PL) in cartilage exposed to interleukin 1β (IL-1β). For this purpose, blood and cartilage were harvested from eight skeletally mature and healthy horses. Blood was processed into PL aliquots and divided into three groups (Frozen, Freeze-dried and Filtered freeze-dried), used in autologous and allogeneic conditions and in three different concentrations (1.5, 3 and 6-fold). Different PL preparations were then applied in cartilage culture with interleukin-1 beta and cultured for 10 days. Cartilage and media samples were collected and analyzed for total GAG and 35SO4-labeled GAG content. Results No significant differences between the controls and PL groups in cartilage and media were demonstrated. The effects of PL on cartilage matrix were concentration dependent and intermediate concentrations (3-fold) in PL showed increased 35SO4-labelled GAG in cartilage. Conclusion In conclusion, the allogeneic freeze-dried PL presented equivalent effects compared to frozen autologous PL. Intermediate platelet concentration on average demonstrated improved results, demonstrating less GAG loss compared to other concentrations.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Lijuan Du ◽  
Yong Miao ◽  
Xin Li ◽  
Panli Shi ◽  
Zhiqi Hu

Platelet rich plasma (PRP) is a concentrate of autologous platelets which contain enrichment growth factors (GFs). However, the addition of exogenous anticoagulant and procoagulant may result in clinical side effects and raise the price of PRP. Herein, we report a novel method named temperature controlled PRP (t-PRP), in which exogenous additives are dispensable in the preparation and activation process. Human blood samples were processed by a two-step centrifugation process under hypothermic conditions (4°C) to obtain t-PRP and rewarming up to 37°C to activate t-PRP. Contemporary PRP (c-PRP) was processed as the control. t-PRP showed a physiological pH value between 7.46 and 7.48 and up to 6.58 ± 0.45-fold significantly higher platelet concentration than that of whole blood compared with c-PRP (4.06-fold) in the preparation process. Meanwhile, t-PRP also maintained a stable GF level between plasma and PRP. After activation, t-PRP demonstrated natural fiber scaffolding, which trapped more platelet and GFs, and exhibited a slow release and degradation rate of GFs. In addition, t-PRP exhibited the function of promoting wound healing. t-PRP is a novel and convenient method for the preparation and activation of PRP without any additives. Compared to c-PRP, t-PRP reflects more physiologic characteristics while maintaining high quality.


2020 ◽  
Vol 21 (16) ◽  
pp. 5702 ◽  
Author(s):  
Pietro Gentile ◽  
Simone Garcovich

The number of studies evaluating platelet-rich plasma (PRP) concentration has substantially grown in the last fifteen years. A systematic review on this field has been realized by evaluating in the identified studies the in vitro PRP concentration—also analyzing the platelet amount—and the in vivo PRP effects in tissue regeneration compared to any control. The protocol has been developed in agreement with the Preferred Reporting for Items for Systematic Reviews and Meta-Analyses-Protocols (PRISMA-P) guidelines. Multistep research of the PubMed, MEDLINE, Embase, PreMEDLINE, Ebase, CINAHL, PsycINFO, Clinicaltrials.gov, Scopus database and Cochrane databases has permitted to identify articles on different concentrations of PRP in vitro and related in vivo impact for tissue repair. Of the 965 articles initially identified, 30 articles focusing on PRP concentration have been selected and, consequently, only 15 articles have been analyzed. In total, 40% (n = 6) of the studies were related to the fixed PRP Concentration Group used a fixed PRP concentration and altered the platelet concentration by adding the different volumes of the PRP (lysate) to the culture. This technique led to a substantial decrease in nutrition available at higher concentrations. Sixty percent (n = 9) of the studies were related to the fixed PRP Volume Group that used a fixed PRP-to-media ratio (Vol/Vol) throughout the experiment and altered the concentration within the PRP volume. For both groups, when the volume of medium (nutrition) decreases, a lower rate of cell proliferation is observed. A PRP concentration of 1.0 × 106 plt/μL, appears to be optimal thanks to the constant and plentiful capillary nutrition supply and rapid diffusion of growth factors that happen in vivo and it also respects the blood decree-law. The PRP/media ratio should provide a sufficient nutrition supply to prevent cellular starvation, that is, PRP ≤ 10% (Vol/Vol) and thus best mimic the conditions in vivo.


2019 ◽  
Vol 20 (11) ◽  
pp. 920-933 ◽  
Author(s):  
Lucía Gato-Calvo ◽  
Tamara Hermida-Gómez ◽  
Cristina R. Romero ◽  
Elena F. Burguera ◽  
Francisco J. Blanco

Background: Platelet Rich Plasma (PRP) has recently emerged as a potential treatment for osteoarthritis (OA), but composition heterogeneity hampers comparison among studies, with the result that definite conclusions on its efficacy have not been reached. Objective: 1) To develop a novel methodology to prepare a series of standardized PRP releasates (PRP-Rs) with known absolute platelet concentrations, and 2) To evaluate the influence of this standardization parameter on the anti-inflammatory properties of these PRP-Rs in an in vitro and an ex vivo model of OA. Methods: A series of PRPs was prepared using the absolute platelet concentration as the standardization parameter. Doses of platelets ranged from 0% (platelet poor plasma, PPP) to 1.5·105 platelets/µl. PRPs were then activated with CaCl2 to obtain releasates (PRP-R). Chondrocytes were stimulated with 10% of each PRP-R in serum-free culture medium for 72 h to assess proliferation and viability. Cells were co-stimulated with interleukin (IL)-1β (5 ng/ml) and 10% of each PRP-R for 48 h to determine the effects on gene expression, secretion and intra-cellular content of common markers associated with inflammation, catabolism and oxidative stress in OA. OA cartilage explants were co-stimulated with IL-1β (5 ng/ml) and 10% of either PRP-R with 0.75·105 platelets/µl or PRP-R with 1.5·105 platelets/µl for 21 days to assess matrix inflammatory degradation. Results: Chondrocyte viability was not affected, and proliferation was dose-dependently increased. The gene expression of all pro-inflammatory mediators was significantly and dose-independently reduced, except for that of IL-1β and IL-8. Immunoblotting corroborated this effect for inducible NO synthase (NOS2). Secreted matrix metalloproteinase-13 (MMP-13) was reduced to almost basal levels by the PRP-R from PPP. Increasing platelet dosage led to progressive loss to this anti-catabolic ability. Safranin O and toluidine blue stains supported the beneficial effect of low platelet dosage on cartilage matrix preservation. Conclusion: We have developed a methodology to prepare PRP releasates using the absolute platelet concentration as the standardization parameter. Using this approach, the composition of the resulting PRP derived product is independent of the donor initial basal platelet count, thereby allowing the evaluation of its effects objectively and reproducibly. In our OA models, PRP-Rs showed antiinflammatory, anti-oxidant and anti-catabolic properties. Platelet enrichment could favor chondrocyte proliferation but is not necessary for the above effects and could even be counter-productive.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1478
Author(s):  
Lorenzo G. T. M. Segabinazzi ◽  
Giorgia Podico ◽  
Michael F. Rosser ◽  
Som G. Nanjappa ◽  
Marco A. Alvarenga ◽  
...  

In light of PRP’s increasing popularity in veterinary practice, this study aimed to compare three manual methods to prepare and cool equine PRP. The blood of 18 clinically healthy mares was collected via venipuncture in a blood transfusion bag (method 1), blood tubes (method 2), and a syringe (method 3). In method 1, samples were double centrifuged; method 2 involved one centrifugation, and in method 3 the syringe was kept in an upright position to sediment for 4 h. After processing with three methods, PRP and platelet-poor plasma (PPP) were extracted and assessed for red (RBC) and white blood cell counts (WBC), platelet counts, and viability. In a subset of mares (n = 6), samples were processed with the three methods, and PRP was evaluated at 6 and 24 h postcooling at 5 °C. Method 1 resulted in the highest and method 3 in the lowest platelet concentration (p < 0.05), and the latter also had greater contamination with WBC than the others (p < 0.001). Platelet viability was similar across treatments (p > 0.05). Cooling for 24 h did not affect platelet counts in all methods (p > 0.05); however, platelet viability was reduced after cooling PRP produced by method 3 (p = 0.04), and agglutination increased over time in all methods (p < 0.001). The three methods increased (1.8–5.6-fold) platelet concentration in PRP compared to whole blood without compromising platelet viability. In conclusion, all three methods concentrated platelets and while cooling affected their viability. It remains unknown whether the different methods and cooling would affect PRP’s clinical efficacy.


2006 ◽  
Vol 95 (03) ◽  
pp. 434-440 ◽  
Author(s):  
Satu Hyytiäinen ◽  
Ulla Wartiovaara-Kautto ◽  
Veli-Matti Ulander ◽  
Risto Kaaja ◽  
Markku Heikinheimo ◽  
...  

SummaryThrombin regulation in newborns remains incompletely understood.We studied tissue factor-initiated thrombin formation in cord plasma in vitro, and the effects of Factor VLeiden (FVL) heterozygosity on thrombin regulation both in vitro and in vivo in newborns. Pregnant women with known thrombophilia (n=27) were enrolled in the study. Cord blood and venous blood at the age of 14 days were collected from 11 FVL heterozygous newborns (FVL-positive) and from 16 FVL-negative newborns. Prothrombin fragment F1+2 and coagulation factors were measured. Tissue factor-initiated thrombin formation was studied in cord platelet-poor plasma (PPP) of FVL-negative and -positive newborns, and in both PPP and platelet-rich plasma (PRP) of healthy controls. The endogenous thrombin potential (ETP) in cord PPP or PRP was ∼60% of that in adult plasma, while thrombin formation started ∼55% and ∼40% earlier in cord PPP and PRP, respectively. Further, in FVL-positive newborns thrombin formation started significantly earlier than in FVL-negative newborns. Exogenous activated protein C (APC) decreased ETP significantly more in cord than in adult PRP. In FVL-negative cord plasma 5nM APC decreased ETP by 17.4±3.5% (mean±SEM) compared with only 3.5±3.8% in FVL-positive cord plasma (p=0.01). FVL-positive newborns showed similar levels of F1+2 but significantly decreased levels of factor V compared with FVL negative newborns both in cord plasma (FV 0.82±0.07 U/ml vs. 0.98±0.05 U/ml, p=0.03) and at the age of two weeks (FV 1.15±0.04 U/ml vs. 1.32±0.05 U/ml, p=0.03). In conclusion, newborn plasma showed more rapid thrombin formation and enhanced sensitivity to APC compared with adult plasma. FVL conveyed APC resistance and a procoagulant effect in newborn plasma. Lack of elevated F1+2 levels in FVL-positive infants, however, suggested the existence of balancing mechanisms; one could be the observed lower level of factor V in FVL heterozygous newborns.


2016 ◽  
Vol 74 (2) ◽  
pp. 71-77 ◽  
Author(s):  
Gary W. Moore ◽  
James C. Maloney ◽  
Robert A. Archer ◽  
Kerri L. Brown ◽  
Katarzyna Mayger ◽  
...  

2021 ◽  
Vol 33 (6) ◽  
pp. 219-221
Author(s):  
Laura Bolton

Activated platelets release a rich broth of growth factors involved in wound healing. One way to deliver activated platelets to wounds is in the form of platelet-rich plasma (PRP) harvested by centrifuging the patient’s venous blood after activating the platelets with collagen or calcium chloride and/or autologous thrombin, then delicately removing the supernatant, called platelet-poor plasma (PPP). Platelet-rich plasma is usually injected into the lesion and/or applied topically, then sealed in or over the wound using a moisture-retentive dressing. Platelet-rich plasma (often with PPP) has been applied at different times, depths, and frequencies to chronic and acute wounds using various PRP doses and vehicles to achieve widely differing results. Meta-analyses have reported that PRP improved healing rates of open diabetic foot ulcers and venous ulcers1,2 and may reduce pain and surgical site infection (SSI) incidence in open and closed acute surgical wounds. However, inconsistency in study methods and outcome measures limited consistency of pain and SSI results.1 No consistent effect on healing or deep SSI rates was reported as a result of adding 1 intraoperative dose of PRP in the surgical site before closing elective foot and ankle surgery incisions of 250 patients as compared with 250 similar patients receiving the same procedure without PRP.3 After decades of research, ideal parameters of PRP delivery and use on each type of wound remain unclear for improving SSI, acute wound pain, and healing outcomes. This installment of the Evidence Corner reviews 2 surgical studies that may provide clues about optimal PRP use. One triple-blind randomized clinical trial (RCT) focused on irrigation of freshly closed carpal ligament surgical incisions with PRP as compared with PPP.4 Another non-blind RCT explored the effect of injecting PRP into open pilonidal sinus excisions 4 days and 12 days after surgery.5


2018 ◽  
Vol 4 (1) ◽  
pp. e000442 ◽  
Author(s):  
Hajer Graiet ◽  
Anna Lokchine ◽  
Pauline Francois ◽  
Melanie Velier ◽  
Fanny Grimaud ◽  
...  

Background/aimsPlatelet-rich plasma (PRP) injections are used in sports medicine and have been the subject of increased clinical interest. However, there have been very few reports of the composition of initial whole blood and the final PRP product. The objective of this study was to provide technical tools to perform a correct characterisation of platelets, leucocytes and red blood cells (RBCs) from whole blood and PRP.MethodsBlood and PRP were obtained from 26 healthy volunteers and prepared according to the varying parameters encountered within PRP process preparation and quantification (harvesting method, anticoagulant used, sampling method, counting method). Concentrations were measured at t=0, t=1, t=6 and t=24 hours.ResultsSampling of blood in Eppendorf tubes significantly decreased platelet concentration over time, whereas sampling in Microvette EDTA-coated tube kept platelet concentration stable until 24 hours. A non-significant difference was observed in platelet counts in PRP with impedance (median (IQR): 521.8 G/L (505.3–524.7)) and fluorescence (591.5 G/L (581.5–595.8)) methods. Other studied parameters did not influence platelet concentrations in blood or PRP samples. Leucocytes and RBC counts were similar whatever the anticoagulant, sampling, harvesting and counting methods used for both blood and PRP samples.ConclusionsSystematic sampling of blood and PRP in EDTA-coated tubes for quality control is recommended. The use of a validated counter for PRP sample should also be taken into account.


2018 ◽  
Vol 33 (4) ◽  
pp. 401-406 ◽  
Author(s):  
Qizhao Ma ◽  
Zhigang Mao ◽  
Jipei Du ◽  
Shiping Liao ◽  
Yanjiang Zheng ◽  
...  

Background: Previous studies have reported that polymorphisms in the interleukin-1 gene may be involved in tumorigenesis and tumor progression. Aim: The purpose of the present study was to evaluate whether an insertion/deletion polymorphism, rs3783553, located in the miR-122 target gene interleukin-1α, was associated with the risk of colorectal cancer. Methods: Genomic DNA was extracted from peripheral venous blood of 382 patients with colorectal cancer and 433 controls, and the polymorphism was genotyped using a polymerase chain reaction assay. Results: Significantly decreased colorectal cancer risk was observed to be associated with the interleukin-1α rs3783553 insertion/insertion genotype ( P=0.0001; OR=0.41; 95% CI 0.26, 0.65) and the insertion allele ( P<0.001; OR=0.68; 95% CI 0.55, 0.83). Stratification analysis based on clinical and pathological features also revealed that the “TTCA” insertion allele of rs3783553 contributes to slow the progression of colorectal cancer. Conclusion: These results suggest that the rs3783553 polymorphism could be a useful genetic marker to predict the size/extent of colorectal cancer.


Sign in / Sign up

Export Citation Format

Share Document