scholarly journals Therapeutic Interventions of Cardamom in Cancer and Other Human Diseases

Author(s):  
Samir Qiblawi ◽  
Mohd Adnan Kausar ◽  
S. M. A. Shahid ◽  
Mohd. Saeed ◽  
Awfa Y. Alazzeh

Cardamom, a dietary phytoproduct, is the most popular spice in the world, and its beneficial health properties are gaining more and more attention. Small cardamom [Elettaria cardamomum (L.) Maton. (Family: Zingiberaceae) ] has been used for traditional therapeutic applications, including the management of asthma, teeth and gum infections, cataracts, nausea, diarrhea and heart, digestive and kidney disorders. Numerous studies have demonstrated the biological activity of cardamom and its polyphenols, including antioxidant, anti-tumor, anti-inflammatory, and metabolic control.1,8-cineole, and its esters, Limonene, α-terpinyl acetates are the most abundant bioactive constituents in cardamom. They are known to be multifunctional compounds that can be efficient in the prevention or treatment of various types of cancers, cardiovascular diseases, chronic inflammatory conditions, digestive disorders, as well as infectious bacterial and fungal diseases. In this review, we summarized the up-to-date research and underlying molecular mechanisms of cardamom and its active components.

2020 ◽  
Vol 134 (17) ◽  
pp. 2243-2262
Author(s):  
Danlin Liu ◽  
Gavin Richardson ◽  
Fehmi M. Benli ◽  
Catherine Park ◽  
João V. de Souza ◽  
...  

Abstract In the elderly population, pathological inflammation has been associated with ageing-associated diseases. The term ‘inflammageing’, which was used for the first time by Franceschi and co-workers in 2000, is associated with the chronic, low-grade, subclinical inflammatory processes coupled to biological ageing. The source of these inflammatory processes is debated. The senescence-associated secretory phenotype (SASP) has been proposed as the main origin of inflammageing. The SASP is characterised by the release of inflammatory cytokines, elevated activation of the NLRP3 inflammasome, altered regulation of acetylcholine (ACh) nicotinic receptors, and abnormal NAD+ metabolism. Therefore, SASP may be ‘druggable’ by small molecule therapeutics targeting those emerging molecular targets. It has been shown that inflammageing is a hallmark of various cardiovascular diseases, including atherosclerosis, hypertension, and adverse cardiac remodelling. Therefore, the pathomechanism involving SASP activation via the NLRP3 inflammasome; modulation of NLRP3 via α7 nicotinic ACh receptors; and modulation by senolytics targeting other proteins have gained a lot of interest within cardiovascular research and drug development communities. In this review, which offers a unique view from both clinical and preclinical target-based drug discovery perspectives, we have focused on cardiovascular inflammageing and its molecular mechanisms. We have outlined the mechanistic links between inflammageing, SASP, interleukin (IL)-1β, NLRP3 inflammasome, nicotinic ACh receptors, and molecular targets of senolytic drugs in the context of cardiovascular diseases. We have addressed the ‘druggability’ of NLRP3 and nicotinic α7 receptors by small molecules, as these proteins represent novel and exciting targets for therapeutic interventions targeting inflammageing in the cardiovascular system and beyond.


Bothalia ◽  
1989 ◽  
Vol 19 (2) ◽  
pp. 225-235 ◽  
Author(s):  
A. Hutchings

The holistic concept of Xhosa and Zulu traditional medicine and some differences from Western orthodox practice are briefly outlined. The transmission of herbal knowledge within various social groups is outlined. The background, training and some procedures followed by five of the informants are discussed. Plant characteristics that may be seen, felt, smelled or tasted are considered as possible determinants of usage. The form of plant parts accounts for some usage in the more magically orientated medicines whereas colour, texture or the production of froth may signal the presence of medicinally active components such as tannin, mucilage and saponin. The role of plants producing a milky latex is discussed. Vesicant or irritant properties are utilized in septic or inflammatory conditions. Aromatic plants are used for respiratory or digestive disorders and pungent-smelling plants are used in the treatment of catarrh and some stress-related disorders. Bitter or sour- tasting plants may be used as an aid to digestion or serve a deterrent function. Parallel usage of some related plants in African and European herbal practice indicates that appropriate usage may be widely determined by easily discerned plant characteristics. Two herbal medicinal recipes recorded by the author and a list of medicinal plants collected in Transkei are presented.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 636
Author(s):  
Nikola Hudakova ◽  
Simona Hricikova ◽  
Amod Kulkarni ◽  
Mangesh Bhide ◽  
Eva Kontsekova ◽  
...  

Coronavirus disease (COVID-19) caused by the SARS-CoV-2 virus has been affecting the world since the end of 2019. The severity of the disease can range from an asymptomatic or mild course to acute respiratory distress syndrome (ARDS) with respiratory failure, which may lead to death. Since the outbreak of the pandemic, scientists around the world have been studying the genome and molecular mechanisms of SARS-CoV-2 infection to develop effective therapies and prevention. In this review, we summarize the progressive development of various treatments and vaccines as they have emerged, a year after the outbreak of the pandemic. Initially for COVID-19, patients were recommended drugs with presumed antiviral, anti-inflammatory, and antimicrobial effects that were previously used to treat other diseases. Thereafter, therapeutic interventions were supplemented with promising approaches based on antibodies, peptides, and stem cells. However, licensed COVID-19 vaccines remain the most effective weapon in combating the pandemic. While there is an enormous effort to enhance the vaccination rate to increase the entire population immunity, the production and delivery of vaccines is becoming limited in several countries. In this regard, there are new challenges needing to be addressed by combining non-pharmacological intervention with effective therapies until vaccination is accessible to all.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Dickson Kofi Wiredu Ocansey ◽  
Bing Pei ◽  
Xinwei Xu ◽  
Lu Zhang ◽  
Chinasa Valerie Olovo ◽  
...  

Abstract Background Recent studies reporting the intricate crosstalk between cellular and molecular mediators and the lymphatic endothelium in the development of inflammatory bowel diseases (IBD) suggest altered inflammatory cell drainage and lymphatic vasculature, implicating the lymphatic system as a player in the occurrence, development, and recurrence of intestinal diseases. This article aims to review recent data on the modulatory functions of cellular and molecular components of the IBD microenvironment on the lymphatic system, particularly lymphangiogenesis. It serves as a promising therapeutic target for IBD management and treatment. The interaction with gut microbiota is also explored. Main text Evidence shows that cells of the innate and adaptive immune system and certain non-immune cells participate in the complex processes of inflammatory-induced lymphangiogenesis through the secretion of a wide spectrum of molecular factors, which vary greatly among the various cells. Lymphangiogenesis enhances lymphatic fluid drainage, hence reduced infiltration of immunomodulatory cells and associated-inflammatory cytokines. Interestingly, some of the cellular mediators, including mast cells, neutrophils, basophils, monocytes, and lymphatic endothelial cells (LECs), are a source of lymphangiogenic molecules, and a target as they express specific receptors for lymphangiogenic factors. Conclusion The effective target of lymphangiogenesis is expected to provide novel therapeutic interventions for intestinal inflammatory conditions, including IBD, through both immune and non-immune cells and based on cellular and molecular mechanisms of lymphangiogenesis that facilitate inflammation resolution.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2104 ◽  
Author(s):  
Higashi

Coffee is a popular beverage throughout the world. Coffee contains various chemical compounds (e.g., caffeine, chlorogenic acids, hydroxyhydroquinone, kahweol, cafestol, and complex chemical mixtures). Caffeine is also the most widely consumed pharmacological substance in the world and is included in various beverages (e.g., coffee, tea, soft drinks, and energy drinks), products containing chocolate, and drugs. The effects of coffee and caffeine on cardiovascular diseases remain controversial. It is well known that there are J-curve-type or U-curve-type associations of coffee consumption with cardiovascular events including myocardial infarction and stroke. However, there is little information on the direct and indirect effects of coffee consumption on endothelial function in humans. It is likely that the coffee paradox or caffeine paradox exists the association of coffee intake with cardiovascular diseases, cardiovascular outcomes, and endothelial function. This review focusses on the effects of coffee and caffeine on endothelial function from molecular mechanisms to clinical perspectives.


Author(s):  
Shigeo Godo ◽  
Akira Suda ◽  
Jun Takahashi ◽  
Satoshi Yasuda ◽  
Hiroaki Shimokawa

Over the past couple of decades, accumulating evidence has shown that structural and functional abnormalities of coronary microvasculature are highly prevalent, associated with adverse clinical outcomes in patients with various cardiovascular diseases. The term coronary microvascular dysfunction (CMD) has been coined to refer to this clinical condition and is increasingly recognized as an important clinical entity in many clinical settings. The potential mechanisms of CMD appear to be heterogenous, including enhanced coronary vasoconstrictive reactivity at microvascular level, impaired endothelium-dependent and independent coronary vasodilator capacities, and increased coronary microvascular resistance secondary to structural factors. Recent experimental and clinical studies have highlighted emerging modulators of vascular functions, vital insight into the pathogenesis of cardiovascular diseases associated with CMD, and potential therapeutic interventions to CMD with major clinical implications. In this article, we will briefly review the current progress on pathophysiology, molecular mechanisms, and clinical management of CMD from bench to bedside.


2020 ◽  
Vol 99 (6) ◽  
pp. 15-31
Author(s):  
A.A. Korenkova ◽  
◽  
E.M. Mayorova ◽  
V.V. Bahmetjev ◽  
M.V. Tretyak ◽  
...  

The new coronavirus infection has posed a major public health challenge around the world, but new data on the disease raises more questions than answers. The lack of optimal therapy is a significant problem. The article examines the molecular mechanisms of SARS-CoV-2 infection and the pathogenesis of COVID-19, special attention is paid to features of pathological processes and immune responses in children. COVID-19 leads to a wide diversity of negative outcomes, many of which can persist for at least months. Many of the consequences have yet to be identified. SARS-CoV-2 may provoke autoimmune reactions. Reinfection, herd immunity, vaccines and other prevention measures are also discussed in this review.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 1278-1285
Author(s):  
Mohamed Yafout ◽  
Amine Ousaid ◽  
Ibrahim Sbai El Otmani ◽  
Youssef Khayati ◽  
Amal Ait Haj Said

The new SARS-CoV-2 belonging to the coronaviruses family has caused a pandemic affecting millions of people around the world. This pandemic has been declared by the World Health Organization as an international public health emergency. Although several clinical trials involving a large number of drugs are currently underway, no treatment protocol for COVID-19 has been officially approved so far. Here we demonstrate through a search in the scientific literature that the traditional Moroccan pharmacopoeia, which includes more than 500 medicinal plants, is a fascinating and promising source for the research of natural molecules active against SARS-CoV-2. Multiple in-silico and in-vitro studies showed that some of the medicinal plants used by Moroccans for centuries possess inhibitory activity against SARS-CoV or SARS-CoV-2. These inhibitory activities are achieved through the different molecular mechanisms of virus penetration and replication, or indirectly through stimulation of immunity. Thus, the potential of plants, plant extracts and molecules derived from plants that are traditionally used in Morocco and have activity against SARS-CoV-2, could be explored in the search for a preventive or curative treatment against COVID-19. Furthermore, safe plants or plant extracts that are proven to stimulate immunity could be officially recommended by governments as nutritional supplements.


2019 ◽  
Vol 26 (39) ◽  
pp. 6976-6990 ◽  
Author(s):  
Ana María González-Paramás ◽  
Begoña Ayuda-Durán ◽  
Sofía Martínez ◽  
Susana González-Manzano ◽  
Celestino Santos-Buelga

: Flavonoids are phenolic compounds widely distributed in the human diet. Their intake has been associated with a decreased risk of different diseases such as cancer, immune dysfunction or coronary heart disease. However, the knowledge about the mechanisms behind their in vivo activity is limited and still under discussion. For years, their bioactivity was associated with the direct antioxidant and radical scavenging properties of phenolic compounds, but nowadays this assumption is unlikely to explain their putative health effects, or at least to be the only explanation for them. New hypotheses about possible mechanisms have been postulated, including the influence of the interaction of polyphenols and gut microbiota and also the possibility that flavonoids or their metabolites could modify gene expression or act as potential modulators of intracellular signaling cascades. This paper reviews all these topics, from the classical view as antioxidants in the context of the Oxidative Stress theory to the most recent tendencies related with the modulation of redox signaling pathways, modification of gene expression or interactions with the intestinal microbiota. The use of C. elegans as a model organism for the study of the molecular mechanisms involved in biological activity of flavonoids is also discussed.


2020 ◽  
Vol 26 (15) ◽  
pp. 1729-1741 ◽  
Author(s):  
Seyed H. Shahcheraghi ◽  
Venant Tchokonte-Nana ◽  
Marzieh Lotfi ◽  
Malihe Lotfi ◽  
Ahmad Ghorbani ◽  
...  

: Glioblastoma (GBM) is the most common and malignant astrocytic glioma, accounting for about 90% of all brain tumors with poor prognosis. Despite recent advances in understanding molecular mechanisms of oncogenesis and the improved neuroimaging technologies, surgery, and adjuvant treatments, the clinical prognosis of patients with GBM remains persistently unfavorable. The signaling pathways and the regulation of growth factors of glioblastoma cells are very abnormal. The various signaling pathways have been suggested to be involved in cellular proliferation, invasion, and glioma metastasis. The Wnt signaling pathway with its pleiotropic functions in neurogenesis and stem cell proliferation is implicated in various human cancers, including glioma. In addition, the PI3K/Akt/mTOR pathway is closely related to growth, metabolism, survival, angiogenesis, autophagy, and chemotherapy resistance of GBM. Understanding the mechanisms of GBM’s invasion, represented by invasion and migration, is an important tool in designing effective therapeutic interventions. This review will investigate two main signaling pathways in GBM: PI3K/Akt/mTOR and Wnt/beta-catenin signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document