scholarly journals Influence of Process Variables on Budesonide Nanoparticles Using Factorial Design

Author(s):  
Ashwin Kuchekar ◽  
Jayesh Jathar ◽  
Ashwini Gawade ◽  
Bhanudas Kuchekar

Aims: Nanoparticles are the colloidal carrier systems for delivery of poorly soluble drugs. Budesonide. (BUD) a corticosteroid practically insoluble in water is used in asthma treatment. The aim of the present research work was to develop and evaluate BUD nanoparticles. Methodology: The prepared formulation was analyzed for % encapsulation efficiency, particle size analysis, zeta potential, polydispersity index (PDI), scanning electron microscopy and transmission electron microscopy. Poloxamer-188 was found in stabilizing BUD nanoparticles. Results: The observed % encapsulation efficiency of the optimized batch was (82.95) %, particle size was 271.8 nm with PDI 0.456. Solvent injection method was successfully implemented to developed BUD nanoparticles poloxamer-188. Sonication time and amplitude played an important role in governing the particle size. Conclusion: It can be inferred from the study that nanoparticles are a potential drug delivery method for poorly water-soluble drug delivery which can not only get impacted by formulation variables but also by process variables.

Author(s):  
Madhusudan Rao Y ◽  
Shailaja M ◽  
Ramakrishna S ◽  
Ramesh G ◽  
K H Reddy ◽  
...  

The main objective of the present research work was to design, optimize and characterize olanzapine loaded nano-emulsion for improved brain transport of the drug.   Olanzapine nano-emulsion was formulated using the ultrasonication method. The formulation variables (oil and surfactant) and process variables (ultrasonication time) were optimized by Response surface methodology using the Box-Behnken statistical method. Particle size, polydispersity index (PDI) and zeta potential were measured by photon correlation spectroscopy using a Malvern zeta sizer. Morphology of emulsion droplets was examined by transmission electron microscopy (TEM). Release study was performed and drug release was estimated by HPLC method. Stability studies were performed at 4oC-25oC for a period of three months. The optimized nano-emulsion obtained showed a uniform size distribution with an average size in the range of 65.1 nm to 74.21 nm and surface charge in the range of –18.9 mv to – 25.23 mv. The Transmission electron microscopy studies on olanzapine nano-emulsion revealed a spherical morphology of globules. An average of 91.91% of drug was released from the optimized formulation over a period of 24 hours. The particle size analysis after three months showed no significant change implying that the nano-emulsion was quite stable when stored at room temperature. Stable olanzapine nano-emulsion was formulated. The novel nanoformulation was found to be a potential vehicle for delivery of olanzapine to the brain.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2008
Author(s):  
Samsul Rizal ◽  
N. I. Saharudin ◽  
N. G. Olaiya ◽  
H. P. S. Abdul Khalil ◽  
M. K. Mohamad Haafiz ◽  
...  

The degradation and mechanical properties of potential polymeric materials used for green manufacturing are significant determinants. In this study, cellulose nanofibre was prepared from Schizostachyum brachycladum bamboo and used as reinforcement in the PLA/chitosan matrix using melt extrusion and compression moulding method. The cellulose nanofibre(CNF) was isolated using supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was characterised with transmission electron microscopy (TEM), FT-IR, zeta potential and particle size analysis. The mechanical, physical, and degradation properties of the resulting biocomposite were studied with moisture content, density, thickness swelling, tensile, flexural, scanning electron microscopy, thermogravimetry, and biodegradability analysis. The TEM, FT-IR, and particle size results showed successful isolation of cellulose nanofibre using this method. The result showed that the physical, mechanical, and degradation properties of PLA/chitosan/CNF biocomposite were significantly enhanced with cellulose nanofibre. The density, thickness swelling, and moisture content increased with the addition of CNF. Also, tensile strength and modulus; flexural strength and modulus increased; while the elongation reduced. The carbon residue from the thermal degradation and the glass transition temperature of the PLA/chitosan/CNF biocomposite was observed to increase with the addition of CNF. The result showed that the biocomposite has potential for green and sustainable industrial application.


1989 ◽  
Vol 169 ◽  
Author(s):  
Rollin E. Lakis ◽  
Sidney R. Butler

AbstractY1Ba2Cu3O7 has been prepared by the evaporative decomposition of solutions method. Nitrate and mixed anion solutions were atomized and decomposed at temperatures ranging from 300°C to 950°C. The resulting materials have been characterized using x-ray powder diffraction, Thermal Gravimetric Analysis (TGA), particle size analysis, Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The powder consists of 0.3 micron agglomerated hollow spheres with a primary particle size of 0.06 micron. TGA and x-ray diffraction indicate the presence of barium nitrate and barium carbonate due to incomplete decomposition and/or product contamination by the process environment.


2018 ◽  
Vol 10 (1) ◽  
pp. 338
Author(s):  
Rachmawati Ramadhana Mustofa ◽  
Iskandarsyah .

Objective: This study aimed to prepare and characterize anti-acne ethosomes using the cold- and thin-layer hydration methods.Methods: A sonication step was included during ethosome preparation to improve the quality of the cold method. Azelaic acid, Phospholipon 90G,ethanol, propylene glycol, and phosphate buffer (pH 7.4) were used in the procedures. Prepared ethosomal suspensions were characterized usingtransmission electron microscopy, particle-size analysis, and spectrophotometry.Results: Ethosomes prepared using the thin-layer hydration method (F1) had small unilamellar vesicles, while those prepared using the cold methodwith 15-min sonication (F4) showed spherical, elliptical, unilamellar, and multilamellar vesicles. F1 ethosomes had a Dmean volume of 648.57±231.26,whereas those prepared using the cold method with 5- (F2), 10- (F3), and 15-min (F4) sonication had Dmean volumes of 2734.04±231.49 nm,948.90±394.52 nm, and 931.69±471.84 nm, respectively. Polydispersity indices of F2, F3, and F4 ethosomes were 0.74±0.21, 0.86±0.05, and 0.91±0.03,respectively, with a poor particle-size distribution, compared to that of F1 (0.39±0.01). Zeta potentials of F1–F4 ethosomes were −38.27±1.72 mV,−23.53±1.04 mV, −31.4±1.04 mV, and −34.3±1.61 mV, respectively. Entrapment efficiencies of F1–F4 ethosomes were 90.71±0.11%, 53.84±3.16%,72.56±0.28%, and 75.11±1.42%, respectively.Conclusion: Anti-acne ethosomes produced using the thin-layer hydration method had superior properties than those produced using the coldmethod with 15-min sonication.


Author(s):  
Upasana Yadav ◽  
Nuzhat Husain ◽  
Qamar Rehman

Objective: In the present study, we have made an attempt to the developed formulation of nanoparticles (NPs) of eprosartan mesylate (EM) incorporated in carboxymethyl chitosan using reverse micelle technique for the better drug delivery by improving solubility.Methods: The NPs size and morphology were investigated by high-resolution transmission electron microscopy and field emission scanning electron microscopy, respectively. The physical and chemical aggregation state of eprosartan was analyzed using ultraviolet spectroscopy, and Fourier transforms infrared spectroscopy.Results: To increase the solubility of eprosartan by reverse micelle technique of the drug through polymeric NPs is an alternative efficient, option for increasing the solubility. Eprosartan nanosuspension was successfully formulated for dissolution and bioavailability enhancement of the drug. The percentage drug release pattern of both formulations was compared against that of pure drug. It shows that in 10 min 39% and 17% of drug was released from the NPs made by RM method and microemulsion method, respectively, as compared to that of 1.3% of the pure drug. In 50 min almost more than half 51% of the drug was released from NPs by microemulsion method whereas only 2.5% of the drug was released from NPs containing the pure drug. In 120 min 67% of the drug was released from NPs by microemulsion method whereas only 5.8% of drug release was shown by NPs with the pure drug. We are paying attention on evaluating the influence of particle size and crystalline state on the in vitro performance of eprosartan.Conclusion: In summary, we have developed a new approach toward the delivery of poorly water-soluble drug eprosartan by reverse micellar method. The particle size of NPs obtained by the reverse micellar method was significantly reduced as compared to the other method.


2012 ◽  
Vol 18 (S2) ◽  
pp. 1364-1365 ◽  
Author(s):  
Y. Zhao ◽  
Y. Tang ◽  
G. Vaughan ◽  
D. Ozkaya

Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 – August 2, 2012.


1992 ◽  
Vol 82 (2) ◽  
pp. 111-115 ◽  
Author(s):  
C Abramson ◽  
J Wilton

Nail dust particles were analyzed by scanning electron microscopy for size and topography. The percentage of "fines" that could be inhaled and deposited in the alveoli and bronchioles were determined by quantitative particle size analysis. Distribution representing the largest total mass was graphed between 1 and 2 microns. The authors found that 86% of nail dust would reach the bronchioles and alveoli, and 31% could be expected to deposit in these areas.


2002 ◽  
Vol 740 ◽  
Author(s):  
Gopinath Mani ◽  
Qinguo Fan ◽  
Samuel C. Ugbolue ◽  
Isabelle M. Eiff

ABSTRACTThis research work focuses on combining ball milling and ultrasonication to produce nano-size clay particles. Our work also emphasizes on increasing the specific surface area of montmorillonite clay particles by reducing the particle size to nanometer dimensions. We have characterized the as-received clay particles by using particle size analysis based on laser diffraction and found that the size of the clay particles is not consistent and the particle size distribution is very broad. However, after the unique treatment and processing, the clay particles were obtained in nanometer dimensions with narrowed particle size distribution.


Author(s):  
SOBITHARANI P ◽  
ANANDAM S ◽  
MOHAN VARMA M ◽  
VIJAYA RATNA J ◽  
SHAILAJA P

Objective: The main objective of this study was to investigate the release pattern of a poorly water-soluble drug quercetin (QU) by fabricating its cyclodextrin nanosponges. Methods: Characterization of the original QU powder and QU-loaded nanosponges was carried out by the Fourier-transformed infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and dissolution tester. The drug release pattern was subjected to various kinetic models. Results: FTIR studies confirmed the formation of inclusion complex of drug. The particle size analysis revealed that the average particle size measured by laser light scattering method is around 400–420 nm with low polydispersity index. The particle size distribution is unimodal and having a narrow range. A sufficiently high zeta potential indicates that the complexes would be stable and the tendency to agglomerate would be miniscule. TEM image revealed the porous nature of nanosponges. The dissolution of the QU nanosponges was significantly higher compared with the pure drug. Conclusion: From the kinetic study, it is apparent that the regression coefficient value closer to unity in case of Korsmeyer-Peppas model indicates that the drug release exponentially to the elapsed time. n value obtained from the Korsmeyer-Peppas plots, i.e., 0.9911 indicating non-Fickian (anomalous) transport ; thus, it projected that delivered its active ingredient by coupled diffusion and erosion.


Sign in / Sign up

Export Citation Format

Share Document