scholarly journals Properties of Sustainable Concrete Containing Red Mud: A Review

Author(s):  
Krishna Singh Kanyal ◽  
Yash Agrawal ◽  
Trilok Gupta

Concrete is an essential construction material and major component of concrete is cement. There is a huge amount of carbon dioxide emission into the atmosphere during manufacturing process of cement which has negative impact on the environment. Thus it become necessary to discover a substitute material for cement in concrete. Rapid industrialization generates a significant quantity of waste material which are causing negative effect on environment. These wastes can be a replacement for traditional material which are used in concrete like cement or fine aggregate. Red mud is waste material which generated from bauxite ore at the time of production of aluminium by the Bayer process. In this review paper, the effort is made to present the properties of concrete with red mud after studying several research papers. This paper discusses the properties of red mud concrete such as workability, compressive strength, split tensile strength, flexural strength, water absorption and modulus of elasticity. This paper shows the feasibility of partial substitution of cement in concrete by red mud. The study shows that incorporating red mud resulted increase in strengths of concrete such as compressive, split tensile and flexural strength. The water absorption of concrete decrease as increase in red mud content, it can be established that there is a possibility for using red mud in concrete as a binder ingredient for sustainable construction.

2021 ◽  
Vol 7 (7) ◽  
pp. 1169-1182
Author(s):  
Imran Ali Channa ◽  
Abdullah Saand

The main objective of this research work is to investigate the influence of the addition of waste materials, like aluminium waste material, Soft Drink Tin Fibers (SDTF) or soft tins to improve mechanical properties of concrete and also study the strength behavior of concrete, such as flexural strength and indirect or split tensile strength. It has been acknowledged that the use of fibers in concrete has considerable effects to improve strength parameters and characteristics of concrete. In this research work, similar efforts are made to present the effects of soft tin fibers or aluminium waste material as a reinforcing material in concrete and to assess the mechanical behavior of concrete. Particularly, this research work aimed to investigate experimentally the effect of soft drink tins on tensile (cylinder splitting tensile strength) and flexural strength. Soft tin fibers of 25.4  5  0.5 mm in size were used and added from 1 to 5% by the weight of cement with the design mix of 1:1.624:2.760 at 0.50 w/c ratio. Therefore, 6 batches (every batch contained 3 prisms and 3 cylinders) were prepared and cast for evaluation of tensile and flexural strength. One batch was cast without inclusion of fibers (controlled batch) and remaining 5 batches were cast with the addition of fibers using 1, 2, 3, 4, and 5% respectively. It was revealed from obtained results that split tensile strength and flexural strength of specimen increases as compared to controlled batch up to 4% addition of fibers. Moreover, beyond 4% soft drink tin fiber level, strength begins to fall down. Thus, it can be suggested that mechanical properties of concrete can be enhanced by 4% of soft drink tin fibers. Moreover, in this study, soft drink tin fibers (SDTF) or aluminium waste are used as the application of utilization of waste materials as a partial construction material and also on another side it controls the solid waste and environmental pollution. Doi: 10.28991/cej-2021-03091718 Full Text: PDF


2021 ◽  
Vol 1200 (1) ◽  
pp. 012008
Author(s):  
K Supar ◽  
F A A Rani ◽  
N L Mazlan ◽  
M K Musa

Abstract The use of waste material as a partial replacement has become popular in concrete mixture studies. Many research has utilized waste materials like cement, fine aggregate, coarse aggregate, and reinforcing materials substitute. The current paper focuses on some of the waste elements that are utilized in a concrete mortar (use in roof tile) as a partial replacement for fine aggregates such as rubber ash, sawdust, seashells, crumb rubber, pistachio shells, cinder sand, stone dust, and copper slag. There are many variations of mix proportion and water-cement ratio for every waste material. Compressive strength was compared and found that stone dust and the combination of seashell and coconut fiber shows an incensement when used to replacing fine aggregate. The suitable replacement level for stone dust is 25% and 50%. While the suitable replacement levels for the combination of sea shell and coconut fiber are 20% and 30%. Material from the rubber families such as rubber crumb and rubber ash is only suitable for replacement levels. Rubber families especially rubber crumbs have shown low water absorption value which is good in the production of roofing products. As we know, the roof should have waterproof properties to prevent any leaks from happening when it rains. Most of the waste materials added as fine aggregates in concrete have increased the amount of water absorption and found that sawdust is the most abundant material with a high percentage of water absorption compared to the others. Research on the partial replacement of fine aggregates replaced with waste materials is needed more extensively to provide more confidence about their use in concrete mortars, especially on roof tiles.


The present Investigation is aimed at utilizing low cost material Dolomite powder and waste material Quarry dust as partial replacement of cement and sand in concrete. This experimental investigation is carried out in three stages. In 1st stage M25 grade of concrete is produced by replacing cement by 0%, 6%, 12% and 18% of Dolomite Powder. In 2nd Stage concrete is produced by keeping the optimum 12% of dolomite powder as constant and sand is replaced by quarry dust in the percentage of 0%, 25%, 35% and 45%. In 3rd stage the optimum percentage of Dolomite Powder and Quarry Dust (DP+QD) Concrete are used to determine the compressive strength, split tensile strength and flexural strength of concrete and to check the flexural behavior of RCC beams. It is found that the concrete made of low cost material dolomite powder and waste material quarry dust increases the compressive strength, split tensile strength and flexural strength of concrete when compared to that of normal concrete. It also concluded that the first crack load and ultimate load of dolomite powder and quarry dust reinforced concrete beams increases when compared with normal reinforced concrete beams. From study it is concluded that the low cost material Dolomite powder & Quarry dust can be used in construction works which results in construction cost. By using natural resources the environment is protected.


Improvements in materials used for construction have an important impact on the Construction industry. Therefore many efforts have been made in the construction industry to put to use waste material products, e.g., worn-out tyres, into useful and Economical items. If this is achieved successfully it will contribute to the reduced quantity of waste material dumping problems by effective use of these waste materials in the building sector. The present research will concentrate on how to effectively put to use the rubber waste tyres in construction industry so as to reduce their impact on our precious environment and also using them effectively in the construction process. It will involve comprehensive laboratory tests on fresh and hardened rubberized concrete in order to study its strength behavior i.e. compressive and flexure strength, and its impact resistance with different volume of rubber in crumb state (fine aggregate). Volume variation of crumb rubber. The proposed research work will study the effect of volume variation of crumb rubber on the compressive strength, flexural strength, split tensile strength & workability in terms of Slump in mm of the concrete.


Author(s):  
P. Subathra ◽  
Binil Varghese ◽  
Muhammed Jamsheed K. P ◽  
Muzammil T. H

Since the building made of cement concrete consumes almost half of the total energy generated and accordingly accountable for huge amount of CO2 emission, it is necessary to replace the Portland cement (PC) with sustainable construction material. Similarly, Prosopis Juliflora is a shrub or small tree in the family Fabaceae, a kind of mesquite which is considered to be a potential threat for ground water in South India. Hence, this has to eradicate so as to maintain the groundwater and also to effectively utilize its ash thereby reducing environmental pollution, this can be used as a partial replacement for cement. In this regard, this paper investigates the technical feasibility of using Prosopis Juliflora ash (PJA) as cementitious material by partially (5%, 10% and 15%) replacing cement by Prosopis Juliflora ash. The mixes were evaluated for their fresh, physical and strength properties such as workability, density and compressive strength and the results were compared with the conventional mix. In order to save the environment and to save the resources we have come up with using the Prosopis Juliflora (Semai-Karuvelam in Tamil) ash as the partial replacement of cement. Cement will produce equal amount of greenhouse gas (co2) which increase the global warming. As the amount of cement is reduced greenhouse gases also reduced. Utilization of Juliflora ash as a partial substitution for cement is one of the promising methods to increase the strength and thermal insulation for cement blocks. The strength parameters (compressive strength, split tensile strength and flexural strength) of concrete with blended Prosopis Juliflora cement are evaluated.


In this study, the effectiveness of waste Polyethylene Terephthalate (PET) fibers in improving the properties of concrete was investigated. Recycling of waste PET bottles is a daunting task in developing countries due to inadequate recycling facilities. The main aim of this research paper is to investigate the mechanical behavior of the components by using PET fibers. This paper describes the performance of PET fiber reinforced concrete for two grades of concrete mix M20 and M30. An experimental work has been carried out on the specimens like cubes, cylinders and beams which were casted in the laboratory and their behavior under the test was observed. The PET fibers were replaced to the fine aggregate volume from 0.0% to 2.0%. The compressive strength, split tensile strength and flexural strength of concrete were determined after 28 days of curing period. The highest compressive, split tensile and flexural strength of concrete was observed at 1.5% fiber volume replacement to the fine aggregate. The study concludes that the replacement of waste PET fibers to fine aggregate in concrete serves as a means of utilizing the waste generated by PET bottles to increase the strength of concrete.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 689
Author(s):  
Pragadeesan S ◽  
Harishankar S

Sand is the most normally utilized fine aggregate in construction industry for the generation of concrete. The present scenario is in such a way that the cost of sand reached new heights and the demand for sand is also exhaustive. The replacement of the sand has a lot of constraints. Seashells are composed of calcium carbonate or chitin can be suitable alternative. It is used as a replacement of fine aggregate by 2%, 4%, 6%, 8%, and 10% for M20 grade concrete. Further 15% and 20% replacements are made. Silica fume is a ultrafine powder gathered as a result of silicon and ferrosilicon compound generation and the principle field of use is as pozzolanic material. It is used as an admixture by 5% to 10% of weight of cement to improve the strength properties. Concrete cubes and cylinders with mentioned proportion and conventional concrete are casted. Mechanical properties are evaluated by conducting compressive strength and split tensile strength tests.  


Author(s):  
Harshit Sangtani ◽  
Bhavini Jain ◽  
K Narayana Shenoy

In the present research an attempt has been made to replace some part of fine aggregate (sand) by an industrial waste, the industrial waste under investigation is produced when the PVC pipes are cut into the desired sizes, it is a very thin flaky substance having a specific gravity of 1.5.This material is very voluminous in nature, so it reduces the workability of concrete if used in large percentage. So this material cannot be used in very large quantities but it can successfully replace sand up to 20 percent when used in pavement blocks. Experimentation was done at a water-cement ratio ranging from 0.43-0.35.Compressive strength of the concrete has been evaluated at 7 days, 14 days 21 days and 28 days. Results of the investigation indicate that compressive strength of the concrete decreases as the percentage of PVC waste material increases.7 day strength of the concrete has varied from 35.55 MPa to 70.01 MPa and 28 day strength has varied from 56.7 MPa to 76 MPa. Water absorption was well within the limits and varied from 4.67% to 7.26% by mass. The results revealed that this waste material can satisfactorily replace sand in small amount also it is a great way to dispose of the waste and hence is a step forward in the quest for a greener concrete.


2021 ◽  
Vol 882 ◽  
pp. 228-236
Author(s):  
Anamika Agnihotri ◽  
Ajay Singh Jethoo ◽  
P.V. Ramana

The mechanical and durability properties were best at 45% GGBS and 5% Waste Glass with 0.4 water/cement ratio. The recycled materials implemented for mix proportion were waste glass provided considerably to enhance its properties when added with GGBS. In most of the research work, the effect of WG and GGBS in concrete as a partial substitution of fine aggregate and cement individually is analyzed. Previous studies only show the individual impact of these concrete recycled materials on mechanical and durability properties. In the present study, an exact optimum substitution level of cement by GGBS (15 – 60% at an increment of 15%) and fine aggregate by the waste glass (5 – 20% at an increase of 5%) combined for OPC concrete mix. Mechanical (compressive strength, split tensile strength and flexural strength) and microstructural properties (FESEM) were observed on the combination of waste glass and GGBS concrete mix.


Cement is probably the mostly widely used construction material in the world. However, the production of cement releases CO2 into the air. Greenhouse effect is mainly caused by carbon- di-oxide. Hence, there is a need to develop sustainable alternatives to Portland cement. One of the suitable alternatives is usage of Geo-Polymer Concrete (GPC) which is made from utilization of waste materials like fly ash and ground granulated blast furnace slag (GGBS) with suitable alkali activators. In general, chemical admixtures are added to get concrete with increased strength. The chemical admixtures for increasing the strength are not easily accessible in rural areas. The fresh and hardened properties of concrete are improved by using magnetic water. The scaling and corrosion are greatly reduced using magnetic water. It is due to the change in microstructure of water molecules making it soft water. Further, recycled coarse aggregate was used with coarse aggregate in the study. The specimens were cast and were investigated for Compressive strength, Split Tensile strength and Flexural strength test after 7 days and 28 days of ambient curing. It was observed that Compressive, Split Tensile and Flexural strength of the GPC specimen with magnetic water increased compared to other mix proportions.


Sign in / Sign up

Export Citation Format

Share Document