scholarly journals DESIGN AND CONSTRUCTION OF THE BOSCOMBE MULTI-PURPOSE REEF

2011 ◽  
Vol 1 (32) ◽  
pp. 58
Author(s):  
Shaw Trevor Mead ◽  
Chris Blenkinsopp ◽  
Andrew Moores ◽  
Jose Borrero

The Boscombe Reef is a multipurpose reef structure designed primarily for the enhancement of surfing amenity at Boscombe, Poole Bay, England. The reef was designed to maximise the small and generally poor-quality surfing wave climate of the eastern English Channel coast. The reef was constructed from 54 large, sand filled geotextile containers ranging in size from 1 to 5 m diameters and 15 to 70 m long with a total volume of approximately 13,000 m3. Construction of the reef began in the summer of 2008, was suspended during the following winter and was completed in the late summer of 2009. The reef is now in service and provides a high intensity right hand surfing ride of up to 70 m and a shorter left hand ride of up to 30 m. Although the reef was not designed as a coastal protection structure, monitoring of the morphological response supports that the reef promotes shore protection through the formation of an inshore salient.

Author(s):  
Lesley C. Ewing

Coastal areas are important residential, commercial and industrial areas; but coastal hazards can pose significant threats to these areas. Shoreline/coastal protection elements, both built structures such as breakwaters, seawalls and revetments, as well as natural features such as beaches, reefs and wetlands, are regular features of a coastal community and are important for community safety and development. These protection structures provide a range of resilience to coastal communities. During and after disasters, they help to minimize damages and support recovery; during non-disaster times, the values from shoreline elements shift from the narrow focus on protection. Most coastal communities have limited land and resources and few can dedicate scarce resources solely for protection. Values from shore protection can and should expand to include environmental, economic and social/cultural values. This paper discusses the key aspects of shoreline protection that influence effective community resilience and protection from disasters. This paper also presents ways that the economic, environmental and social/cultural values of shore protection can be evaluated and quantified. It presents the Coastal Community Hazard Protection Resilience (CCHPR) Index for evaluating the resilience capacity to coastal communities from various protection schemes and demonstrates the use of this Index for an urban beach in San Francisco, CA, USA.


2016 ◽  
Author(s):  
Christopher W. Thomas ◽  
A. Brad Murray ◽  
Andrew D. Ashton ◽  
Martin D. Hurst ◽  
Andrew K. A. P. Barkwith ◽  
...  

Abstract. A range of planform morphologies emerge along sandy coastlines as a function of offshore wave climate. It has been implicitly assumed that the morphological response time is rapid compared to the time scales of wave-climate change, meaning that coastal morphologies simply reflect the extant wave climate. This assumption has been explored by focussing on the response of two distinctive morphological coastlines – flying spits and cuspate cusps – to changing wave climates, using a coastline evolution model. Results indicate that antecedent conditions are important in determining the evolution of morphologies, and that sandy coastlines can demonstrate hysteresis behaviour. In particular, antecedent morphology is particularly important in the evolution of flying spits, with characteristic timescales of morphological adjustment on the order of centuries for large spits. Characteristic timescales vary with the square of aspect ratios of capes and spits; for spits, these timescales are an order of magnitude longer than for capes (centuries vs. decades). When wave climates change more slowly than the relevant characteristic timescales, coastlines are able to adjust in a quasi-equilibrium manner. Our results have important implications for the management of sandy coastlines where decisions may be implicitly and incorrectly based on the assumption that present-day coastlines are in equilibrium with current conditions.


2020 ◽  
Vol 8 (4) ◽  
pp. 247 ◽  
Author(s):  
Mireille Escudero ◽  
Edgar Mendoza ◽  
Rodolfo Silva

In the last decade, innovative beach nourishment strategies have been developed, driven by the increased worldwide interest in environmentally friendly coastal protection measures. In this context, the massive nourishment project of the Netherlands, known as Sand Engine, begun in 2011, has been hailed as a successful means of beach protection. Continuous monitoring, field campaigns, and numerical modeling have shown that the great volume of sand deployed is gradually transported by the waves and currents along the coastline, avoiding the need for repeated invasive, small scale beach replenishments. A very small, bell-shaped Sand Engine was designed to protect the beachfront at a tourist resort near Puerto Morelos, Mexico. To estimate the morphological response of the beach and the functioning of the micro Sand Engine as a sand reservoir, XBeach numerical modelling was applied to the project. The micro Sand Engine is seen to be a sustainable and eco-friendly coastal protection measure, especially applicable when a large nourishment project is not viable. Maintenance work for the nourishment is cost and time effective, and any negative impacts to sensitive ecosystems nearby can be detected and controlled quickly.


The Auk ◽  
2021 ◽  
Vol 138 (1) ◽  
Author(s):  
Ronald L Mumme ◽  
Robert S Mulvihill ◽  
David Norman

Abstract Rapid high-intensity molt of flight feathers occurs in many bird species and can have several detrimental consequences, including reductions in flight capabilities, foraging performance, parental care, and plumage quality. Many migratory New World warblers (family Parulidae) are known to have intense remigial molt, and recent work has suggested that simultaneous replacement of the rectrices may be widespread in the family as well. However, the phylogenetic distribution of simultaneous rectrix molt, and high-intensity flight feather molt more generally, has not been systematically investigated in warblers. We addressed this issue by examining flight feather molt in 13 species, representing 7 different warbler genera, at Powdermill Avian Research Center in southwestern Pennsylvania, USA. All 13 species replaced their 12 rectrices simultaneously, with the onset of rectrix molt occurring in the early-middle stages of high-intensity primary molt. As expected, single-brooded early migrants molted earlier than double-brooded species whose nesting activities extend into late summer. However, our finding that late-molting species replaced their primaries more slowly and less intensively than early molting species was unexpected, as late-molting species are widely hypothesized to be under stronger migration-related time constraints. This surprising result appears to be at least partially explained by a positive association between the pace of molt and daylength; shorter late-summer days may mandate reduced daily food intake, lower molt intensity, and a slower pace of molt. In comparison to other passerines, flight feather molt in warblers of eastern North America is extraordinarily intense; at its peak, individuals are simultaneously replacing 50–67% of their 48 flight feathers (all 12 rectrices and 6–10 remiges on each wing) for 2–3 weeks or more. Because molt of this intensity is likely to present numerous challenges for flight, avoiding predators, foraging, and parental care, the period of flight feather molt for warblers constitutes a highly demanding phase of their annual cycle.


2020 ◽  
Author(s):  
Irina Dinu

<p><strong>Are artificial reefs an appropriate solution to protect the Danube Delta coast?</strong></p><p>Irina Dinu<sup>1</sup>, Vicente Gràcia<sup>2</sup>, Manuel García-León<sup>3</sup>, Adrian Stănică<sup>1</sup></p><p> </p><p><sup>1</sup> – National Institute for Marine Geology and Geoecology (GeoEcoMar), 23-25 Dimitrie Onciul St., 024053, Bucharest, Romania</p><p><sup>2</sup> - Laboratory of Maritime Engineering, Polytechnic University of Catalonia (LIM-UPC), Campus Diagonal Nord, Building D1, 1-3 Jordi Girona St., 08034 Barcelona</p><p><sup>3</sup> - International Centre for Research of Coastal Resources (CIIRC), 1-3 Jordi Girona St., Mòdul D1, Campus Nord, 08003 Barcelona, Spain</p><p> </p><p>The Danube Delta coast is part of the Danube Delta Biosphere Reserve, thus being aimed to preserve its typical natural habitats. Over the last decades, human interventions along the Danube River, as well as coastal navigation and harbour protection works on the Romanian coast have determined the reduction of sediment supply along the Danube Delta coast, which is nowadays affected by erosion on its widest part.</p><p>Sustainable management plans for the Danube Delta coast include the use of working-with-nature solutions.</p><p>In this work, the effect of artificial reefs on the wave heights along the Danube Delta coast is studied. The results of a previous wave climate study and a wave model have been used for this purpose. Simulations have been performed for different setup of artificial reefs and for extreme storms with various return periods. The effect of sea level rise has also been taken into account.</p><p>Our results show that artificial reefs are significantly effective in reducing the wave heights along the Danube Delta coast. However, further detailed analysis concerning the impact of such a coastal protection solution is still needed.  </p>


2019 ◽  
Vol 23 (9) ◽  
pp. 13-17 ◽  
Author(s):  
T.Yu. Khashirova ◽  
Z.G. Lamerdonov ◽  
S.A. Zhaboev ◽  
M.A. Enaldieva ◽  
M.M. Thabisimova ◽  
...  

The proposed methodology for the selection of the optimal design solution of the coastal protection structure, adapted to the specific hydrological, hydraulic and morphological conditions of the river according to an integral indicator, including the reliability of the structure; economic and environmental indicators. Innovative solutions to protect the banks of rivers from erosion, patented in the Russian Federation, decision-making modeling algorithms are presented. The developed theory and methodology for choosing the optimal solution can be implemented on other subsystems.


Cephalalgia ◽  
2003 ◽  
Vol 23 (7) ◽  
pp. 534-540 ◽  
Author(s):  
PD Drummond

The aim of this study was to investigate the effect of painful conditioning stimuli on pain and blink reflexes to supraorbital nerve stimulation. Electromyograph activity was recorded bilaterally from the orbicularis oculi muscles in 13 normal participants in response to low (2.3 mA) and high-intensity (18.6 mA) electrical stimulation of the left supraorbital nerve before, during and after the application of ice to the left or right temple or immersion of the left hand in ice-water for 60 s. The pain evoked by the high-intensity electrical stimulus was greater during painful conditioning stimulation of the ipsilateral temple than during the recovery period afterwards, and was greater than during painful conditioning stimulation of the contralateral temple. These findings imply that spatial summation of nociceptive signals across different divisions of the trigeminal nerve can heighten pain. However, painful conditioning stimulation, particularly to the right temple, strongly suppressed the R2 component of the blink reflex to the low-intensity stimulus, and also suppressed R2 to the high-intensity stimulus. Thus, an inhibitory influence (e.g. diffuse noxious inhibitory controls) appeared to mask ipsilateral segmental facilitation of R2 during ice-induced headache. This finding contrasts with recent electrophysiological evidence of trigeminal sensitization in migraine.


2021 ◽  
Vol 8 ◽  
Author(s):  
Miguel Agulles ◽  
Gabriel Jordà ◽  
Piero Lionello

The fate of the beaches around the world has paramount importance as they are one of the main assets for touristic activities and act as a natural barrier for coastal protection in front of marine storms. Climate change could put them at risk as sea levels rise and changes in the wave characteristics may dramatically modify their shape. In this work, a new methodology has been developed to determine the flooding of sandy beaches due to changes in sea level and waves. The methodology allows a cost-effective and yet accurate estimation of the wave runup for a wide range of beach equilibrium profiles and for different seagrass coverage. This, combined with regional projections of sea level and wave evolution, has allowed a quantification of the future total water level and coastline retreat for 869 beaches across the Balearic Islands for the next decades as a function of greenhouse gases emission scenario. The most pessimistic scenario (RCP8.5) at the end of the century yields an averaged percentage of flooded area of 66% under mean conditions which increases up to 86% under extreme conditions. Moreover, 72 of the 869 beaches of the region would permanently disappear while 314 would be completely flooded during storm episodes. Under a moderate scenario of emissions (RCP4.5), 37 beaches would permanently disappear while 254 would disappear only during storm episodes. In both cases, the average permanent loss of beach surface at the end of the century would be larger than 50%, rising over 80% during storm conditions. The results obtained for the Balearic Islands can be extrapolated to the rest of the Mediterranean as the beaches in all the regions have similar characteristics and will be affected by similar changes in sea level and wave climate. These projections indicate that adaptation plans for beach areas should be put in place as soon as possible.


2012 ◽  
Vol 1 (33) ◽  
pp. 21 ◽  
Author(s):  
Emma Jane Rendle ◽  
Mark Davidson

Geotextile artificial surfing reefs (ASR) are being considered by coastal planners due to their multifunctional potential for coastal protection and habitat provision, as well as additional recreational amenity. However, little research exists on the impact of submerged geotextile structures on the physical marine environment. Europe’s first ASR was constructed in 2009 on the south coast of England in Boscombe and is the case study for this paper. This research investigates the claims regarding the structural resilience of an ASR, the modifications to the inshore wave climate and the shoreline response induced by the introduction of an ASR to a system. The Boscombe ASR has suffered from damage, two major geotextile sand filled containers have degraded in this shallow marine environment in two years post-construction. Observations and simulations presented indicate ameliorated wave field leeward of the ASR. There is little shoreline response, given the structures distance offshore, and no salient or widening of the beach has occurred.


RBRH ◽  
2017 ◽  
Vol 22 (0) ◽  
Author(s):  
Natália Lemke ◽  
◽  
Lauro Julio Calliari ◽  
José Antônio Scotti Fontoura ◽  
Déborah Fonseca Aguiar

ABSTRACT The wave climate characterization in coastal environments is essentially important to oceanography and coastal engineering professionals regarding coastal protection works. Thus, this study aims to determine the most frequent wave parameters (significant wave height, peak period and peak direction) in Patos Lagoon during the period of operation of a directional waverider buoy (from 01/27/2015 to 06/30/2015). The equipment was moored at approximately 14 km from the São Lourenço do Sul coast at the geographic coordinates of 31º29’06” S and 51º55’07” W, with local depth of six meters, registering significant wave height, peak period and peak direction time series. During the analyzed period, the greatest wave frequencies corresponded to short periods (between 2 and 3.5 seconds) and small values of significant wave heights (up to 0.6 meters), with east peak wave directions. The largest wave occurrences corresponded to east peak wave directions (33.3%); peak wave periods between 2.5 and 3 seconds (25.6%) and between 3 and 3.5 seconds (22.1%); and to significant wave heights of up to 0.3 meters (41.2%) and from 0.3 to 0.6 meters (38%). This research yielded unprecedented findings to Patos Lagoon by describing in detail the most occurring wave parameters during the analyzed period, establishing a consistent basis for several other studies that might still be conducted by the scientific community.


Sign in / Sign up

Export Citation Format

Share Document