scholarly journals WAVE RUN-UP OBSERVATIONS ON REVETMENTS WITH DIFFERENT POROSITIES

2012 ◽  
Vol 1 (33) ◽  
pp. 73 ◽  
Author(s):  
Stefan Schimmels ◽  
Michalis Vousdoukas ◽  
Dagmara Wziatek ◽  
Katharina Becker ◽  
Fabian Gier ◽  
...  

Wave run-up plays an important role in the design of coastal protection structures. However, none of the existing formulae for wave run-up predictions explicitly considers the effect of revetment porosity. Recently, two revetments have been tested in the Large Wave Flume (GWK) of Forschungszentrum Küste (FZK), a new type of highly porous polyurethane bonded (PBA revetment) revetment and a smooth interlocked pattern placed concrete block revetment (IPPB revetment), which is considered as “weakly permeable” for the present study. Wave run-up is evaluated by video data analysis based on timestack image processing. The results derived from the timestacks are compared to run-up data measured with conventional wire gauges and the good agreement demonstrates the accuracy and reliability of the video data analysis. The effect of the porosity of the revetment is incorporated into the EuroTop wave run-up formula, showing that for the present case it may reduce the relative run-up heights Ru,2%/Hm0 by about 25 % to 50 % as compared to a smooth impermeable slope.

2012 ◽  
Vol 12 (12) ◽  
pp. 3811-3820 ◽  
Author(s):  
T.-W. Hsu ◽  
S.-J. Liang ◽  
B.-D. Young ◽  
S.-H. Ou

Abstract. For coastal risk mapping, it is extremely important to accurately predict wave run-ups since they influence overtopping calculations; however, nonlinear run-ups of regular waves on sloping structures are still not accurately modeled. We report the development of a high-order numerical model for regular waves based on the second-order nonlinear Boussinesq equations (BEs) derived by Wei et al. (1995). We calculated 160 cases of wave run-ups of nonlinear regular waves over various slope structures. Laboratory experiments were conducted in a wave flume for regular waves propagating over three plane slopes: tan α =1/5, 1/4, and 1/3. The numerical results, laboratory observations, as well as previous datasets were in good agreement. We have also proposed an empirical formula of the relative run-up in terms of two parameters: the Iribarren number ξ and sloping structures tan α. The prediction capability of the proposed formula was tested using previous data covering the range ξ ≤ 3 and 1/5 ≤ tan α ≤ 1/2 and found to be acceptable. Our study serves as a stepping stone to investigate run-up predictions for irregular waves and more complex geometries of coastal structures.


Author(s):  
Hajo von Hafen ◽  
Jacob Stolle ◽  
Nils Goseberg ◽  
Ioan Nistor

Hazardous events, such as landslides, rock slides, rock falls or avalanches often generate extreme, impulsive waves when entering water bodies (Fuchs & Hager, 2015). These waves are approximated by solitary waves and researchers investigate their damage potential when inundating built environment. Deepening the understanding of solitary waves running up a uniform beach slope and propagating over a subsequent horizontal plane can help to reduce and mitigate damage and the number of casualties caused by such a hazardous event. So far, few authors addressed this specific setting near-shore (Fuchs & Hager, 2015; Zelt & Raichlen, 1991). In this study, large scale solitary waves propagate about 200 m in in the Large-Wave Flume (GWK, 307 m 5 m 7 m) at the Coastal Research Center in Hannover, Germany then they run up a beach slope and subsequently break, generating a bore which advances onto a subsequent, initially dry, horizontal surface. Unlike previous studies, the generated solitary waves broke close to the edge between the beach slope and the horizontal plane section. The overall aim of this study is to investigate the characteristics of the broken waves' dynamics. In addition, their surge profile and front celerity are compared to those of the non-breaking solitary waves. Subsequently, the differences between the velocity regimes along the bore propagation path are presented and linked to the fundamental physical processes behind.


2021 ◽  
Vol 13 (22) ◽  
pp. 12794
Author(s):  
Ramin Safari Ghaleh ◽  
Omid Aminoroayaie Yamini ◽  
S. Hooman Mousavi ◽  
Mohammad Reza Kavianpour

Shoreline protection remains a global priority. Typically, coastal areas are protected by armoring them with hard, non-native, and non-sustainable materials such as limestone. To increase the execution speed and environmental friendliness and reduce the weight of individual concrete blocks and reinforcements, concrete blocks can be designed and implemented as Articulated Concrete Block Mattress (ACB Mat). These structures act as an integral part and can be used as a revetment on the breakwater body or shoreline protection. Physical models are one of the key tools for estimating and investigating the phenomena in coastal structures. However, it does have limitations and obstacles; consequently, in this study, numerical modeling of waves on these structures has been utilized to simulate wave propagation on the breakwater, via Flow-3D software with VOF. Among the factors affecting the instability of ACB Mat are breaking waves as well as the shaking of the revetment and the displacement of the armor due to the uplift force resulting from the failure. The most important purpose of the present study is to investigate the ability of numerical Flow-3D model to simulate hydrodynamic parameters in coastal revetment. The run-up values of the waves on the concrete block armoring will multiply with increasing break parameter (0.5<ξm−1,0<3.3) due to the existence of plunging waves until it (Ru2%Hm0=1.6) reaches maximum. Hence, by increasing the breaker parameter and changing breaking waves (ξm−1,0>3.3) type to collapsing waves/surging waves, the trend of relative wave run-up changes on concrete block revetment increases gradually. By increasing the breaker index (surf similarity parameter) in the case of plunging waves (0.5<ξm−1,0<3.3), the low values on the relative wave run-down are greatly reduced. Additionally, in the transition region, the change of breaking waves from plunging waves to collapsing/surging (3.3<ξm−1,0<5.0), the relative run-down process occurs with less intensity.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2947 ◽  
Author(s):  
Yue Ma ◽  
Cuiping Kuang ◽  
Xuejian Han ◽  
Haibo Niu ◽  
Yuhua Zheng ◽  
...  

Artificial reefs are being implemented around the world for their multi-functions including coastal protection and environmental improvement. To better understand the hydrodynamic and morphodynamic roles of an artificial reef (AR) in beach protection, a series of experiments were conducted in a 50 m-long wave flume configured with a 1:10 sloping beach and a model AR (1.8 m long × 0.3 m high) with 0.2 m submergence depth. Five regular and five irregular wave conditions were generated on two types of beach profiles (with/without model AR) to study the cross-shore hydrodynamic and morphological evolution process. The influences of AR on the processes are concluded as follows: (1) AR significantly decreases the incident wave energy, and its dissipation effect differs for higher and lower harmonics under irregular wave climates; (2) AR changes the cross-shore patterns of hydrodynamic factors (significant wave height, wave skewness and asymmetry, and undertow), leading to the movement of shoaling and breaking zones; (3) the beach evolution is characterized by a sandbar and a scarp which respectively sit at a higher and lower location on the profile with AR than natural beach without AR; (4) the cross-shore morphological features indicate that AR can lead to beach state transformation toward reflective state; (5) the scarp retreat process can be described by a model where the scarp location depends linearly on the natural exponential of time with the fitting parameters determined by wave run-up reduced by AR. This study demonstrates cross-shore effects of AR as a beach protection structure that changes wave dynamics in surf and swash zone, reduces offshore sediment transport, and induces different morphological features.


Author(s):  
Yu-Hsien Lin ◽  
Jing-Fu Chen ◽  
Po-Ying Lu

This paper conducts a RANS solver with k-ε turbulent closure to simulate hydrodynamics of wave run-ups of three types of wind turbine foundations, including monopile, gravity-based and tripod support structures. In this study, a semi-empirical formula is developed and calibrated based on velocity stagnation head theory by means of a CFD model, FLUENT. The numerical results are validated by the experimental data, which were implemented in the Large Wave Flume (GWK) of the Coastal Research Centre (FZK) in Hannover and published by Mo et al. (2007) [1]. It is indicated that the difference of normalized run-up envelopes among these wind turbine foundations is smaller for higher wave steepness than those for lower wave steepness. It is also obvious that the tendency of maximum run-up heights is considerably correlated with higher nonlinearity, whereas an opposite trend is obtained for minimum run-up envelops. Eventually, a calibrated run-up parameter is obtained by the present numerical simulation and found that the value becomes smaller with respect to higher nonlinearity and run-up heights.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 7079-7099
Author(s):  
Jianying Chen ◽  
Guojing He ◽  
Xiaodong (Alice) Wang ◽  
Jiejun Wang ◽  
Jin Yi ◽  
...  

Timber-concrete composite beams are a new type of structural element that is environmentally friendly. The structural efficiency of this kind of beam highly depends on the stiffness of the interlayer connection. The structural efficiency of the composite was evaluated by experimental and theoretical investigations performed on the relative horizontal slip and vertical uplift along the interlayer between composite’s timber and concrete slab. Differential equations were established based on a theoretical analysis of combination effects of interlayer slip and vertical uplift, by using deformation theory of elastics. Subsequently, the differential equations were solved and the magnitude of uplift force at the interlayer was obtained. It was concluded that the theoretical calculations were in good agreement with the results of experimentation.


2019 ◽  
Vol 85 (7) ◽  
pp. 73-82
Author(s):  
Vladimir O. Tolcheev

The issues of organizing an expert survey and carrying out statistical processing and analysis of the results are considered. The experts are the fifth-year students undergoing training at the Department of Management and Informatics «Moscow Power Engineering Institute» of the National Research University. The goal of the survey is revealing the disciplines that are most useful for employment in their specialty. We discuss the special features of the survey and a concept of «work in the specialty», with due regard for statistical reliability of the results. Data of written questionnaire gained in 2018 were processed and analyzed using cluster analysis (construction of dendrograms and application of the K-means method) and non-parametric statistical criteria (Friedman and Mann – Whitney – Wilcoxon). Data processing is implemented in the program STATISTICA. The analysis is carried out to reveal significant differences between the educational courses and assess the degree of consistency of the respondents to divide them into clusters that unite the students with similar judgments. Data analysis revealed that experts’ estimates in 2018 are in fairly good agreement with the estimates of previous studies; among the respondents there are three coalitions corresponding to the training modules «Software», «Management Theory», «Data Analysis»; the overall consistency of students in the two groups is very low (and, on the contrary, high in the identified clusters); grades are homogeneous and do not depend on training groups (and employment – unemployment of the respondents). The obtained results allow us to address a number of important questions regarding the ways of improving the educational process, e.g., to optimize yearly course hours for different educational modules.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1985
Author(s):  
Irina Plesco ◽  
Vladimir Ciobanu ◽  
Tudor Braniste ◽  
Veaceslav Ursaki ◽  
Florian Rasch ◽  
...  

A new type of photocatalyst is proposed on the basis of aero-β-Ga2O3, which is a material constructed from a network of interconnected tetrapods with arms in the form of microtubes with nanometric walls. The aero-Ga2O3 material is obtained by annealing of aero-GaN fabricated by epitaxial growth on ZnO microtetrapods. The hybrid structures composed of aero-Ga2O3 functionalized with Au or Pt nanodots were tested for the photocatalytic degradation of methylene blue dye under UV or visible light illumination. The functionalization of aero-Ga2O3 with noble metals results in the enhancement of the photocatalytic performances of bare material, reaching the performances inherent to ZnO while gaining the advantage of the increased chemical stability. The mechanisms of enhancement of the photocatalytic properties by activating aero-Ga2O3 with noble metals are discussed to elucidate their potential for environmental applications.


2002 ◽  
Vol 470 ◽  
pp. 319-357 ◽  
Author(s):  
ODD M. FALTINSEN ◽  
ALEXANDER N. TIMOKHA

The modal system describing nonlinear sloshing with inviscid flows in a rectangular rigid tank is revised to match both shallow fluid and secondary (internal) resonance asymptotics. The main goal is to examine nonlinear resonant waves for intermediate depth/breadth ratio 0.1 [lsim ] h/l [lsim ] 0.24 forced by surge/pitch excitation with frequency in the vicinity of the lowest natural frequency. The revised modal equations take full account of nonlinearities up to fourth-order polynomial terms in generalized coordinates and h/l and may be treated as a modal Boussinesq-type theory. The system is truncated with a high number of modes and shows good agreement with experimental data by Rognebakke (1998) for transient motions, where previous finite depth modal theories failed. However, difficulties may occur when experiments show significant energy dissipation associated with run-up at the walls and wave breaking. After reviewing published results on damping rates for lower and higher modes, the linear damping terms due to the linear laminar boundary layer near the tank's surface and viscosity in the fluid bulk are incorporated. This improves the simulation of transient motions. The steady-state response agrees well with experiments by Chester & Bones (1968) for shallow water, and Abramson et al. (1974), Olsen & Johnsen (1975) for intermediate fluid depths. When h/l [lsim ] 0.05, convergence problems associated with increasing the dimension of the modal system are reported.


Author(s):  
Utku Kânoğlu ◽  
Vasily V. Titov ◽  
Baran Aydın ◽  
Christopher Moore ◽  
Themistoklis S. Stefanakis ◽  
...  

Tsunamis are long waves that evolve substantially, through spatial and temporal spreading from their source region. Here, we introduce a new analytical solution to study the propagation of a finite strip source over constant depth using linear shallow-water wave theory. This solution is not only exact, but also general and allows the use of realistic initial waveforms such as N -waves. We show the existence of focusing points for N -wave-type initial displacements, i.e. points where unexpectedly large wave heights may be observed. We explain the effect of focusing from a strip source analytically, and explore it numerically. We observe focusing points using linear non-dispersive and linear dispersive theories, analytically; and nonlinear non-dispersive and weakly nonlinear weakly dispersive theories, numerically. We discuss geophysical implications of our solutions using the 17 July 1998 Papua New Guinea and the 17 July 2006 Java tsunamis as examples. Our results may also help to explain high run-up values observed during the 11 March 2011 Japan tsunami, which are otherwise not consistent with existing scaling relationships. We conclude that N -waves generated by tectonic displacements feature focusing points, which may significantly amplify run-up beyond what is often assumed from widely used scaling relationships.


Sign in / Sign up

Export Citation Format

Share Document