scholarly journals Cultivar-rootstock interactions on growth, yield and mineral nutrition of newly planted peach trees in a pot experiment

Author(s):  
Peter A Roussos ◽  
Efstathios Ntanos ◽  
Anna Assimakopoulou

Two peach cultivars, i.e. ‘Andross’ and ‘Mercil’ were budded onto four rootstocks of varying vigor (‘Garnem’, ‘GF 677’, ‘Rootpac R’ (RPR) and ‘Rootpac 20’ (RP20)) and planted in pots.  The plants were grown for three years, and each year the growth of the trees (in terms of trunk cross sectional area, tree height, and shoot length), fruit production and leaf nutrient concentration were assessed. The rootstock exerted a significant effect on the above-measured variables, as the lowest tree height in both cultivars was recorded when these were grafted on RP20 (the most dwarfing rootstock of all four used). The yield per tree was highest when the most vigorous rootstocks. ‘Garnem’ resulted in the highest upper plant dry weight, while ‘RP20’ in the lowest. Cultivar exhibited a significant effect regarding leaf nutrient concentration, as ‘Andross’ presented higher concentrations of N, K, Ca and Fe in most combinations and lower concentrations of P and Cu. The discriminant analysis, using all growth and nutrient data from the last two years, revealed that irrespective of the cultivar budded, ‘RP20’ and ‘GF 677’ were clearly distinguished from each other and from ‘RPR’ and ‘Garnem’. On the other hand, the hierarchical agglomerative analysis pointed out the crucial role of ‘RP20’ and ‘Garnem’ on tree growth and leaf nutrient concentration, with the cultivar budded on them playing a minor role. In conclusion, the fertilization program of a young, newly established orchard, should take into account the singularity of each scion-rootstock combination, to achieve the optimum tree performance.

HortScience ◽  
2011 ◽  
Vol 46 (3) ◽  
pp. 365-370 ◽  
Author(s):  
Jose A. Yuri ◽  
Claudia Moggia ◽  
Carolina A. Torres ◽  
Alvaro Sepulveda ◽  
Valeria Lepe ◽  
...  

Performance of seven apple (Malus ×domestica Borkh.) cultivars (‘Brookfield®Gala’, ‘Galaxy’, ‘Super Chief’, ‘Granny Smith’, ‘Fuji Raku Raku’, ‘Cripp's Pink’, and ‘Braeburn’) on M.M.106 and M.9 EMLA rootstocks during their first 6 years was evaluated on a multisite trial in Chile. Second-leaf trees were planted in experimental blocks inside commercial orchards located in five major apple-producing areas in Chile (Graneros, San Clemente, Chillan, Angol, and Temuco). Tree height and volume, trunk cross-sectional area (TCA), fruit yield and size distribution, crop load, and tree phenology were assessed annually. In general, tree growth rates by the end of the third year, when they reached the desired height, were similar in all block locations. M.9 EMLA rootstock reduced tree height by ≈20% in ‘Brookfield® Gala’, ‘Fuji’, ‘Galaxy’, and ‘Granny Smith’. This rootstock also had 50% smaller TCAs than M.M.106’s at Year 6 in most cultivars. The highest productions in ‘Brookfield®Gala’, ‘Galaxy’, ‘Granny Smith’, ‘Cripp's Pink’, and ‘Super Chief’, regardless of rootstock, were obtained in San Clemente and Chillan's blocks. Although M.M. 106 trees delivered higher yields per plant, M.9 EMLA yield efficiency (no. fruit/cm2 TCA) was significantly higher. In general, the higher the latitude (toward south), the later budbreak, full bloom, and harvest occurred.


2001 ◽  
Vol 126 (6) ◽  
pp. 785-790 ◽  
Author(s):  
Thomas Tworkoski ◽  
Ralph Scorza

Shoot and root characteristics of four peach tree [Prunus persica (L.) Batsch (Peach Group)] growth habits (compact, dwarf, pillar, and standard) were studied. In compact trees, leaf number (1350/tree) was twice, but leaf area (6 cm2/leaf) was half that of pillar and standard trees. The number of lateral branches in compact trees (34) was nearly three times more than in pillar and standard trees. Leaf area index (total one-side leaf area per tree divided by the canopy cross-sectional area of the tree) of pillar trees was greater than compact, dwarf, and standard trees (13 compared with 4, 4, and 3, respectively) due to a narrower crown diameter. Dwarf trees were distinct with few leaves (134/tree) and less than half the roots of the other growth habits. Compact trees produced more higher order lateral (HOL) roots than pillar and standard trees. More second order lateral (SOL) roots were produced by compact than standard trees (1.2 vs. 0.8 SOL roots per centimeter first order lateral root). Pillar trees had higher shoot: root dry weight (DW) ratios (2.4) than compact and standard trees (1.7 for both) due to lower root DWs. Root topology was similar among compact, pillar, and standard peach trees but root axes between branch junctions (links) were significantly longer in compact trees. Compact trees had more and longer HOL roots in roots originating near the root collar (stem-root junction) (i.e., more fibrous roots) and this appeared to correlate with more lateral branches in the canopy. These results indicate significant differences in root as well as shoot architecture among growth habits that can affect their use as scion or rootstock cultivars.


HortScience ◽  
2015 ◽  
Vol 50 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Stefano Musacchi ◽  
Federico Gagliardi ◽  
Sara Serra

We assessed the vegetative growth and fruit production behavior of different sweet cherry cultivars grown using multiple new ultra-high-density planting (HDP) and training systems. An experimental orchard established in 2007 in the Ferrara province of Italy was used for this trial. The sweet cherry cultivars under evaluation were ‘Giorgia’ and ‘Grace Star®’ grafted on Gisela® 6; and ‘Black Star®’, ‘Early Bigi®’, ‘Early Star®’, ‘Ferrovia’, ‘Grace Star®’, ‘Kordia’, ‘Regina’, ‘Summit’, ‘Sweet Early®’, and ‘Sylvia’ grafted on Gisela® 5 rootstock. Each cultivar–rootstock combination was trained to spindle, V-system, or Super Spindle Axis (SSA). Planting densities ranged from 1905 trees/ha for spindle with Gisela® 6 to 5714 trees/ha for V-system and SSA with Gisela® 5. Vegetative growth, yield productivity, and fruit quality were evaluated. Among the three systems grafted on Gisela® 5, trees trained to the spindle system had the highest trunk cross-sectional area (26.2 cm2), followed by V-system (21.8 cm2) and SSA (20.2 cm2). Seven years after planting, ‘Ferrovia’ had the highest cumulative yield per hectare among cultivars on Gisela® 5, especially with V-system (50.5 t·ha–1) and SSA (52.2 t·ha–1) training systems. For cultivars on Gisela® 6, ‘Giorgia’ on had the highest cumulative yield per hectare after 7 years, but ‘Grace Star®’ on had higher production (≈14.0 t·ha–1 with V-system and SSA and 12.8 t·ha–1 with spindle) than ‘Giorgia’ in 2013.


HortScience ◽  
2003 ◽  
Vol 38 (3) ◽  
pp. 367-372 ◽  
Author(s):  
Elizabeth A. Wahle ◽  
John B. Masiunas

Greenhouse hydroponics and field experiments were conducted to determine how nitrogen (N) fertilizer treatments affect tomato (Lycopersicon esculentum Mill.) growth, yield, and partitioning of N in an effort to develop more sustainable fertilization strategies. In a hydroponics study, after 4 weeks in nitrate treatments, shoot dry weight was five times greater at 10.0 than at 0.2 mm nitrate. An exponential growth model was strongly correlated with tomato root growth at all but 0.2 mm nitrate and shoot growth in 10 mm nitrate. Root dry weight was only 15% of shoot biomass. In field studies with different population densities and N rates, height in the 4.2 plants/m2 was similar, but shoot weight was less than in the 3.2 plants/m2. At 12 weeks after planting, shoot fresh weight averaged 3.59 and 2.67 kg/plant in treatments with 3.2 and 4.2 plants/m2, respectively. In 1998, final tomato yield did not respond to N rate. In 1999, there was a substantial increase in fruit yield when plants were fertilized with 168 kg·ha-1 N but little change in yield with additional N. Nitrogen content of the leaves and the portion of N from applied fertilizer decreased as the plants grew, and as N was remobilized for fruit production. Both studies indicate that decreasing N as a way to reduce N loss to the environment would also reduce tomato growth.


2000 ◽  
Vol 42 (12) ◽  
pp. 189-200 ◽  
Author(s):  
G.-H. Chen ◽  
H.-K. Mo ◽  
S. Saby ◽  
W.-k. Yip ◽  
Y. Liu

Minimization of excess sludge production in activated sludge processes has been pursued around the world in order to meet stringent environmental regulations on sludge treatment and disposal. To achieve this goal, physical, chemical, and biological approaches have been proposed. In this paper, a chemical compound, 3,3′,4′,5-tetrachlorosalicylanilide (TCS) was tested for enhancing microbial energy spilling of the sludgeso as to minimize its growth. In order to examine this, an exploratory study was conducted using both batch and continuous activated sludge cultures. Batch experiments with these two cultures were carried out at different initial concentrations of TCS. It has been confirmed that an addition of TCS is effective in reducing the production of both the sludge cultures, particularly the continuous culture where the observed growth yield was reduced by around 70%, when the initial TCS concentration was 0.8 ppm. Meanwhile, the substrate removal activity of this culture was found not to be affected at this TCS concentration. To further evaluate the TCS effect, a pure microbial culture of E. coli was employed. Batch experiment results with this culture implied that TCS might be able to reduce the cell density of E. coli drastically when an initial TCS concentration was greater than 0.12 ppm. It was also found that TCS was not toxic to this type of bacteria. Microscopic examinations with a 4′, 6-diamidino-2-phenylindole (DAPI) staining technique revealed that TCS neither affected the cell division nor altered the cell size of E. coli. However, both the cell ATP content and the cell dry weight were reduced significantly with the addition of TCS.


2009 ◽  
Vol 25 (2) ◽  
pp. 107-121 ◽  
Author(s):  
Jan H. D. Wolf ◽  
S. Robbert Gradstein ◽  
Nalini M. Nadkarni

Abstract:The sampling of epiphytes is fraught with methodological difficulties. We present a protocol to sample and analyse vascular epiphyte richness and abundance in forests of different structure (SVERA). Epiphyte abundance is estimated as biomass by recording the number of plant components in a range of size cohorts. Epiphyte species biomass is estimated on 35 sample-trees, evenly distributed over six trunk diameter-size cohorts (10 trees with dbh > 30 cm). Tree height, dbh and number of forks (diameter > 5 cm) yield a dimensionless estimate of the size of the tree. Epiphyte dry weight and species richness between forests is compared with ANCOVA that controls for tree size. SChao1 is used as an estimate of the total number of species at the sites. The relative dependence of the distribution of the epiphyte communities on environmental and spatial variables may be assessed using multivariate analysis and Mantel test. In a case study, we compared epiphyte vegetation of six Mexican oak forests and one Colombian oak forest at similar elevation. We found a strongly significant positive correlation between tree size and epiphyte richness or biomass at all sites. In forests with a higher diversity of host trees, more trees must be sampled. Epiphyte biomass at the Colombian site was lower than in any of the Mexican sites; without correction for tree size no significant differences in terms of epiphyte biomass could be detected. The occurrence of spatial dependence, at both the landscape level and at the tree level, shows that the inclusion of spatial descriptors in SVERA is justified.


2020 ◽  
Vol 18 (1) ◽  
pp. 1093-1104
Author(s):  
Grzegorz Kulczycki ◽  
Elżbieta Sacała

AbstractThis study aimed to examine the influence of increasing doses of chromium (Cr) (26, 39, and 52 mg kg−1 soil) and elemental sulfur (S) (60 mg kg−1 soil) on growth, yield, and mineral nutrition in wheat and maize. Macro- and micronutrients and Cr concentrations were determined in the aboveground parts of plants. All examined doses of Cr caused a marked decrease in the fresh and dry weight of maize. Wheat was more tolerant than maize, and lower Cr doses caused a small but statistically significant increase in the total yield. Wheat accumulated more than twofold Cr than maize, and the concentrations increased with higher Cr concentrations in the soil. The application of S significantly improved the total biomass production and lowered the Cr content in both plants. Cr changed the mineral nutrition in both cereals, but the pattern of changes observed was not the same. Applying S alleviated some adverse effects caused by the Cr. Hence, it is concluded that the application of elemental S may be an effective strategy to reduce adverse effects in plants grown on soil contaminated by heavy metals, especially Cr.


Author(s):  
А. M. Galasheva ◽  
Е. N. Sedov

For the first time in the world and in Russia, Academician of the Russian Academy of Sciences, breeder Evgeny Nikolaevich Sedov created a series of triploid apple cultivars from intervalent crosses 2х × 4х. Triploid apple cultivars bear fruit more regularly, have higher self-fruitfulness and have fruits of high marketability. The article presents data on the study of triploid apple cultivars of the summer ripening period of the VNIISPK breeding - Augusta, Daryona, Maslovskoye, Osipovskoye, Zhilinskoye, Spasskoye and Yablochny Spas as well as the control Canadian cultivar Melba on a semi-dwarf clone rootstock 54-118. Maslovskoye, Zhilinskoye, Spasskoye and Yablochny Spas have immunity to scab. The orchard was planted in 2014, the garden planting scheme was 5 x 2 m. The indicators of the growth force (tree height, crown width and stem diameter) and the yield of trees were studied. At the age of six, the trees of triploid cultivars reached a height of 2.2 m (Maslovskoye) to 3.0 m (Yablochny Spas) on a semi-dwarf rootstock 54-118. The highest indicators of crown volume (3.3-5.3 m3), crown projection area (4.2-5.3 m2) and the cross-sectional area of the stem (46.5-52.8 cm2) were in Osipovskoye, Yablochny Spas, Zhilinskoye and Spasskoye. The highest yield in an average of three years was given by triploid scab-immune apple cultivars on a semi-dwarf rootstock 54-118: Maslovskoye, Zhilinskoye, Spasskoye and Yablochny Spas.


Sign in / Sign up

Export Citation Format

Share Document