scholarly journals Green Synthesis of Gold Nanoparticles using Aqueous Garlic (Allium sativum L.) Extract, and Its Interaction Study with Melamine

Author(s):  
Yoki Yulizar ◽  
Harits Atika Ariyanta ◽  
Lingga Abduracman

Gold nanoparticles (AuNPs) have been successfully prepared by green synthesis method using aqueous extract of garlic with the Latin name of Allium sativum L. (ASL) as a reducing and stabilizing agents. Identification of active compounds in aqueous ASL extract was conducted by phytochemical analysis and Fourier transform infrared (FTIR) spectroscopy, while the synthesized AuNPs were characterized using UV-Vis spectrophotometer and transmission electron microscopy-selected area electron diffraction (TEM-SAED). The AuNPs formation was optimized at aqueous ASL extract concentration of 0.05%, HAuCl4 concentration of 2.0×10-4 M, and pH of 3.6. The optimized AuNPs was characterized   using TEM, and has a spherical shape with particle size of 15±3 nm. The particles were also stable up until one month. The synthesized AuNPs has been studied its interaction with melamine, and showed the optimum pH of interaction at 3.6. Copyright © 2017 BCREC GROUP. All rights reservedReceived: 13rd November 2016; Revised: 3rd January 2017; Accepted: 10th February 2017How to Cite: Yulizar, Y., Ariyanta, H.A., Abdurrachman, L. (2017). Green Synthesis of Gold Nanoparticles using Aqueous Garlic (Allium sativum L.) Extract, and Its Interaction Study with Melamine. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2): 212-218 (doi:10.9767/bcrec.12.2.770.212-218)Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.770.212-218 

Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 347
Author(s):  
Beomjin Kim ◽  
Woo Chang Song ◽  
Sun Young Park ◽  
Geuntae Park

The green synthesis of inorganic nanoparticles (NPs) using bio-materials has attained enormous attention in recent years due to its simple, eco-friendly, low-cost and non-toxic nature. In this work, silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were synthesized by the marine algae extract, Sargassum serratifolium (SS). The characteristic studies of bio-synthesized SS-AgNPs and SS-AuNPs were carried out by using ultraviolet–visible (UV–Vis) absorption spectroscopy, dynamic light scattering (DLS), high-resolution transmission electron microscope (HR-TEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Phytochemicals in the algae extract, such as meroterpenoids, acted as a capping agent for the NPs’ growth. The synthesized Ag and Au NPs were found to have important catalytic activity for the degradation of organic dyes, including methylene blue, rhodamine B and methyl orange. The reduction of dyes by SS-AgNPs and -AuNPs followed the pseudo-first order kinetics.


2020 ◽  
Vol 55 (12) ◽  
pp. 5257-5267 ◽  
Author(s):  
J. Depciuch ◽  
M. Stec ◽  
A. Maximenko ◽  
J. Baran ◽  
M. Parlinska-Wojtan

AbstractAn easy synthesis method of hollow, porous gold nanoparticles (AuHP NPs) with controlled diameter and pores sizes and with a wide range of light absorbance (continuous between 500 and 900 nm) is presented together with the explanation of the nanoparticle formation mechanism. The NPs were investigated using transmission electron microscopy (TEM) combined with the selected area electron diffraction patterns, X-ray diffraction and ultraviolet–visible spectroscopy. TEM images showed that changing the synthesis temperature allows to obtain AuHP NPs with sizes from 35 ± 4 nm at 60 °C to 76 ± 8 nm at 90 °C. The effects of nanoscale porosity on the far- and near-field optical properties of the nanoparticles, as well as on effective conversion of electromagnetic energy into thermal energy, were applied in simulated photothermal cancer therapy. The latter one was simulated by irradiation of two cancer cell lines SW480 and SW620 with lasers operating at 650 nm and 808 nm wavelengths. The mortality of cells after using the synthesized AuHP NPs as photosensitizers is between 20 and 50% and increases with the decrease in the diameter of the AuHP NPs. All these attractive properties of the AuHP NPs make them find application in many biomedical studies.


2018 ◽  
Vol 7 (5) ◽  
pp. 424-432 ◽  
Author(s):  
Widsanusan Chartarrayawadee ◽  
Chee O. Too ◽  
Sukunya Ross ◽  
Gareth M. Ross ◽  
Kanlaya Jumpatong ◽  
...  

AbstractGreen synthesis of nanoparticles (NPs) has received much attention due to biocompatibility and being facile and eco-friendly.Caesalpinia sappanLinn. (CS) is a plant found in Southeast Asia and is commonly known as sappan wood. In this research, we are the first to successfully use CS extract as reducing and stabilizing agents for the green synthesis of gold NPs (AuNPs). Colloidal solutions of AuNPs after reduction show natural red-wine and dark purple color depending on the size of AuNPs, without the interference of the orange/reddish-orange color from the CS extract. The concentration of CS was investigated for the formation and stabilization of AuNPs in colloidal solution (i.e. morphology, size and zeta potential). It was found that the optimized concentration of the reducing agent for the green synthesis of AuNPs was in the range of 0.004–0.04 wt% of CS. As the concentration of CS was increased, the sizes of AuNPs decreased due to the adsorption and stabilizing effect of CS. Transmission electron microscopy (TEM) analysis showed differences in size and shape of the NPs with earthworm and quasi-spherical characteristics. The zeta potential of AuNPs synthesized in the presence of CS was approximately in the range of −10 mV to −20 mV, indicating the stability of AuNPs synthesized by CS.


2021 ◽  
Vol 10 (1) ◽  
pp. 73-84
Author(s):  
Xuan-Truong Mai ◽  
Minh-Chien Tran ◽  
Anh-Quan Hoang ◽  
Phuc Dang-Ngoc Nguyen ◽  
Thi-Hiep Nguyen ◽  
...  

Abstract The extract from Celastrus hindsii (C. hindsii), a plant that naturally grows in the forests of several provinces of Vietnam, has been traditionally used as an alternative medicine for the treatment of inflammation because of its anticancer and antitumor properties. This study reported the green synthesis of stable gold nanoparticles (Au-NPs) derived from HAuCl4 using the extract of C. hindsii as reducing and capping agents. Their particle size could be controlled by adjusting the ratio of the extract to HAuCl4 solution used (1.25%, 2.5%, 3.75%, 5.0%, and 6.25%). The optimal ratio of the extract was 3.75% (Au-NPs-3.75%). The X-ray powder diffraction analysis demonstrated that the Au-NPs was successfully synthesized. Fourier-transform infrared spectroscopy result indicated the possible presence of phenolic acids and flavonoids (acting as reducing agents and potential natural antioxidants). Transmission electron microscopy images showed that the particle diameter of Au-NPs-3.75% varied between 13 and 53 nm (average: ∼30 nm) in its spherical shape. The biosynthesized Au-NPs-3.75% exhibited dose-dependent cytotoxicity against HeLa cells, and the inhibitory concentration (IC50) was 12.5 µg/mL at 48 h. Therefore, Au-NPs that were synthesized from environmentally friendly method without the presence of potentially toxic chemicals were highly possible in biomedical applications.


Gold nanoparticles (AuNPs) were produced by green synthesis method by utilization of Zea Mays Extract as the reducing and stabilizing solution. Selected parameters like Time, Temperature, pH, Light and Concentration effects on the preparation of gold nanoparticles was analyzed by UV- Visible Spectroscopy (UV-Vis.). The size was measured through Dynamic Light Scattering (DLS) and also confirmed by Transmission electron microscopy (TEM) techniques, it is also observed that all the reaction time, Temperature, Concentration and reaction time are very essential parameters which should be noticed with high precession during the synthesis of Gold nanoparticles.


2020 ◽  
Vol 21 (2) ◽  
pp. 56
Author(s):  
Dian Anggraini ◽  
Siti Suhartati ◽  
Iwan Syahjoko Saputra ◽  
Sudirman Sudirman

BIOSYNTHESIS AND CHARACTERIZATION OF GOLD NANOPARTICLES AND THEIR INTERACTION STUDY WITH METFORMIN. Synthesis of gold nanoparticles successfully carried using Imperata cylindrica L leaf extract. In this study, the approach used through green synthesis method is a reaction betwen of the HAuCl4 solution (concentration variation as 3; 5; 7 x 10-4 M) with Imperata cylindrica L leaf extract. Results of UV-Vis showed of gold nanoparticles has a maximum wavelength at 530 nm with absorbance value of 1.4. Results of FTIR shows a shift the absorption peak at wavenumber of 3392 cm-1 to 3404 cm-1. PSA and PZC showed the distribution of gold nanoparticles was 48.84 nm with a charge of 20.5 mV. Gold nanoparticles has a spherical shape and an average particle size of 20 nm which can be seen from the results of the characterization using TEM. XRD showed crystalize size average of gold nanoparticles as 20.47 nm. The interaction between of gold nanoparticles with metformin can be seen in the absorbance decrease of 0.38 at a wavelength of 531 nm and the results of PSA shows an average particle size of AuNPs@metformin is 122 nm. From the characterization data can be concluded the gold nanoparticles were successfully synthesized using natural bioreductors by utilizing secondary metabolites from Imperata cylindrica L leaf extract.


2018 ◽  
Vol 772 ◽  
pp. 78-82 ◽  
Author(s):  
Johnny Jim S. Ouano ◽  
Mar Christian O. Que ◽  
Blessie A. Basilia ◽  
Arnold C. Alguno

Gold nanoparticles were synthesized using brown seaweed (Sargassum crassifolium) extract and chloroauric acid solution. This is an easy, cheap and environment friendly synthesis method for the formation of gold nanoparticles. The gold nanoparticles with varying amount of seaweed extract was characterized using Ultraviolet-visible spectroscopy. Moreover, Transmission Electron Microscopy characterization was used to observe the shape and size of gold nanoparticles. Experimental results revealed that varying the amount of brown seaweed extract can control the optical absorption spectra of the produced gold nanoparticles. Greater amount of brown seaweed extract will exhibit peak in the lower wavelength while smaller amount of seaweed extract will exhibit peak in the higher wavelength. It is believed that the wavelength of free surface electrons resonance is related to the shift of absorption peak. TEM images revealed a more spherical and smaller particles as the amount of brown seaweed extract was increased. This simple green synthesis method of gold nanoparticles will give a cost effective route in the mass production of gold nanoparticles for biomedical applications.


2021 ◽  
Vol 25 (7) ◽  
pp. 1-7
Author(s):  
Fellyzra Elvya Pojol ◽  
Buong Woei Chieng ◽  
Keat Khim Ong ◽  
Rashid Jahwarhar Izuan Abd ◽  
Mohd Junaedy Osman ◽  
...  

Citrate reduction of gold (III) chloride trihydrate (HAuCl4) is commonly used method to synthesise citrate-capped gold nanoparticles (cit-AuNPs). In this study, the sequence of reagents addition was modified (“inverse” method) to synthesise smaller size of cit-AuNPs than the standard Turkevich method (“direct” method). Ultraviolet-visible spectroscopy (UV-vis) and field emission transmission electron microscopy (FETEM) confirmed the formation of cit-AuNPs. The cit-AuNPs synthesized using “inverse” method are smaller in size (14.0 ± 3.03 nm) with uniform spherical shape compared to “direct” method (23.5 ± 7.52 nm). Smaller particles size of cit-AuNPs provide higher efficiency and sensitivity for detection of methylphosphonic acid (MPA) via colorimetric incorporated with image processing with a linear range from 2.5 to 12.5 mM and a low detection limit of 6.28 mM at shorter detection period (24 to 30 s).


2021 ◽  
Vol 891 ◽  
pp. 111-115
Author(s):  
Maradhana Agung Marsudi ◽  
Farah Fitria Sari ◽  
Pandu Mauliddin Wicaksono ◽  
Adinda Asmoro ◽  
Arif Basuki ◽  
...  

In this work, silver nanoparticles have been successfully synthesized using simple and environmentally friendly ‘green synthesis’ method using Indonesian wild honey as mediator. Particle count and size can be optimized by varying the silver nitrate precursor and honey concentration, with the help of sodium hydroxide as pH regulator. Based on X-ray diffraction (XRD) result, crystalline structure of Ag has been confirmed in sample with impurities from AgCl. Based on dynamic light scattering (DLS) and transmission electron microscopy (TEM) results, it was found that the smallest average particles size of AgNPs (117.5 nm from DLS and 11.1 nm from TEM) was obtained at sample with 5% w/v of honey and 0.5 mM of AgNO3.


2017 ◽  
Vol 9 (2) ◽  
pp. 250-255 ◽  
Author(s):  
Olaniran T. OLADIPO ◽  
Bolajoko A. AKINPELU ◽  
Abayomi E. FOLORUNSO ◽  
Anyim GODWIN ◽  
Segun E. OMOTOSO ◽  
...  

Cell-free extracts of six strains of Enterococcus species obtained from fermented foods were used for the green synthesis of silver nanoparticles (AgNPs), which was characterized by UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The biosynthesized AgNPs were dark brown in colour having surface plasmon resonance in the range of 420-442 nm. The spherical shaped AgNPs had sizes of 4-55 nm, whose formations were facilitated by proteins as indicated by the presence of peaks 1,635-1,637 and 3,275-3,313 cm-1 in the FTIR spectra. The energy dispersive x-ray (EDX) showed prominent presence of silver in the AgNPs colloidal solution, while the selected area electron diffraction was typified by the face-centred crystalline nature of silver. The particles inhibited the growth of multi-drug resistant clinical isolates of Escherichia coli, Klebsiella pneumoniae and Proteus vulgaris, and also potentiated the activities of ampicillin, ciprofloxacin and cefuroxime in the AgNPs-antibiotic synergy studies. In addition, the prospective relevance of the particles as nanopreservative in paints was demonstrated with the inhibition of growth of Staphylococcus aureus, Pseudomonas aeruginosa, Aspergillus niger and A. flavus in AgNPs-paint admixture. This report further demonstrates the green synthesis of AgNPs by strains of Enterococcus species.


Sign in / Sign up

Export Citation Format

Share Document