scholarly journals Sulfonated Hydrothermal Carbon-Based Catalyzed Esterification under Microwave Irradiation: Optimization and Kinetic Study

2020 ◽  
Vol 15 (2) ◽  
pp. 514-524
Author(s):  
Laddawan Tumkot ◽  
Armando T. Quitain ◽  
Tetsuya Kida ◽  
Navadol Laosiripojana ◽  
Artiwan Shotipruk ◽  
...  

In this study, the esterification reaction of oleic acid (OA) with methanol was investigated in the presence of a sulfonated hydrothermal carbon-based catalyst under microwave irradiation. The reaction conditions were optimized using response surface methodology based on a central composite design. Three following variables were studied: methanol to OA molar ratios (2.5:1–7.5:1), reaction time (50–70 min) and catalyst loading (2–5 wt.%) to provide a statistical model with the coefficient of regression (R2) of 0.9407. Based on the model, the optimum OA conversion of 95.6% was predicted at 5.8:1 methanol to OA molar ratio, 60 min and 3.05 wt.% catalyst loading. The experimental validation indicated that the model gave a good prediction of OA conversion (2.8% error). Furthermore, the reaction was found to be reasonably described by the pseudo-first order kinetics. The dependency of the reaction rate constant on temperatures gave a value of the activation energy of 64 kJ/mol. Copyright © 2020 BCREC Group. All rights reserved 

2007 ◽  
Vol 5 (3) ◽  
pp. 715-726 ◽  
Author(s):  
Emil Muresan ◽  
Spiridon Oprea ◽  
Theodor Malutan ◽  
Mihai Vata

AbstractThe esterification reaction of palmitic acid with epichlorohydrin catalyzed by an anionic macroporous resin was studied. Purolite A-500 resin proved to be a very effective catalyst in the synthesis of 3-chloro-2-hydroxypropyl palmitate. The effects of certain parameters such as speed of agitation, catalyst particle size, catalyst loading, temperature, initial molar ratio between reactants on the rate of reaction were studied. It was found that the overall rate is intrinsically kinetically controlled. The structure of synthesized ester was confirmed by FTIR and 1H NMR analyses.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1970
Author(s):  
Do Haeng Hur ◽  
Jeoh Han ◽  
Jun Choi

This study aims to investigate the molar ratio effect of sodium to chloride ions on the corrosion of an Alloy 600 steam generator tube and an SA508 tubesheet material. The corrosion behavior was evaluated in solutions with three different molar ratios of sodium to chloride ions using a potentiodynamic polarization method. The corrosion potentials and corrosion rates of both the two materials were significantly decreased as the molar ratio increased from 0.1 to 10. Therefore, it is recommended that the molar ratio control to a value of 1 is beneficial only when the crevice chemistry has a low molar ratio with an acidic pH. The corrosion potentials and corrosion rates were little affected by the total sodium and chloride ion concentrations. SA508 acted as an anode and its corrosion rate was accelerated by galvanic coupling with Alloy 600.


2016 ◽  
Vol 22 (4) ◽  
pp. 409-418 ◽  
Author(s):  
Ana Velickovic ◽  
Jelena Avramovic ◽  
Olivera Stamenkovic ◽  
Vlada Veljkovic

The ethanolysis of sunflower oil catalyzed by calcium oxide was studied in wider ranges of the reaction conditions: temperature 65-75?C, ethanol-to-oil molar ratio 6:1-18:1 and catalyst loading 10-20% in order to determine the reaction kinetics. The proposed kinetic model of the sunflower oil ethanolysis included the changing and first-order reaction mechanism with respect to triacylglycerols and fatty acid ethyl esters. The kinetic parameters were determined and correlated with the process variables. The Arrhenius equation could be applied to the reaction rate constant with the activation energy of 94.0 kJ/mol. The proposed kinetic model showed a good agreement with the experimental data with the mean relative percentage deviation of ?13% (based on 256 data points).


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Nisha Singh ◽  
Raj kumar ◽  
Pravin Kumar Sachan

The esterification reaction of butyric acid with ethanol has been studied in the presence of ion exchange resin (Amberlyst 15). Ethyl butyrate was obtained as the only product which is used in flavours and fragrances. Industrially speaking, it is also one of the cheapest chemicals, which only adds to its popularity. The influences of certain parameters such as temperature, catalyst loading, initial concentration of acid and alcohols, initial concentration of water, and molar ratio were studied. Conversions were found to increase with an increase in both molar ratio and temperature. The experiments were carried out in a batch reactor in the temperature range of 328.15–348.15 K. Variation of parameters on rate of reaction demonstrated that the reaction was intrinsically controlled. Experiment kinetic data were correlated by using pseudo-homogeneous model. The activation energy for the esterification of butyric acid with ethanol is found to be 30 k J/mol.


2019 ◽  
Vol 8 (1) ◽  
pp. 01-07
Author(s):  
Dzikri Hamzah ◽  
Taufik Rinaldi ◽  
Marwan Marwan ◽  
Wahyu Rinaldi

Esterification of glycerol with acetic acid under microwave irradiation in the presence of activated natural zeolite was investigated. Natural zeolite was collected from Ujung Pancu (Aceh Besar) and chemically activated with hydrochloric acid. The reaction was carried out in a stirred glass flask reactor placed inside microwave oven. Experimental variables include microwave transmission time, molar ratio of glycerol to acetic acid, and catalyst loading. XRD profile of activated zeolite showed an increase of Si/Al ratio to 6.042 and the crystallinity decreased slightly by 12.23%, mainly due to dealumination during chemical treatment. Qualitative analysis by FTIR shows that the reaction product obtained by microwave heating contains ester group (triacetin) at wavelength 1706.669 cm-1, while the quantitative analysis by acidi-alkalimetry titration indicates the highest glycerol conversion of 93.033% at the reaction condition of the molar ratio of 1:9, catalyst loading of 3%, and microwave transmission of 10 minutes. The present work suggests that microwave can be utilized as efficient heating technique in esterification of glycerol to triacetin.


Author(s):  
Desy Tri Kusumaningtyas ◽  
Didik Prasetyoko ◽  
Suprapto Suprapto ◽  
Sugeng Triwahyono ◽  
Aishah Abdul Jalil ◽  
...  

In this study, the performance of mesoporous ZSM-5 has been studied on the esterification of acetic acid (AA) with benzyl alcohol (BA). The mesoporous ZSM-5 catalyst has been synthesized with the variation of aging time i.e. 6, 12, and 24 hours at the same temperature, 70 °C. The cation exchange of Na-ZSM-5 to H-ZSM-5 was performed before the catalytic activity test. The acidity type and amount of solids were determined by FT-IR spectroscopy using pyridine as a probe molecule. The characterization by pyridine adsorption showed that at a higher mesoporous surface area, the number of Lewis acid was increased. The highest mesoporous surface area, Lewis, and Brönsted acid sites were obtained by sample which has the lowest crystallinity, i.e. 255.78 m2/g, 0.2732 mmol/g, and 0.20612 mmol/g, respectively. Influence of mesoporous volume was studied on the catalytic activity of the mesoporous ZSM-5 in the esterification reaction. Conversion of acetic acid in the esterification reaction for samples of    HZ-6, HZ-12, and HZ-24 were obtained by titration methods, i.e. 39.59, 36.39, and 32.90 %, respectively. Hence, the reaction temperature of 393 K, molar ratio 1:4 (AA:BA) and catalyst loading 5 % were selected as an optimum reaction parameters. Copyright © 2017 BCREC Group. All rights reservedReceived: 21st November 2016; Revised: 1st February 2017; Accepted: 18th February 2017How to Cite: Kusumaningtyas, D.T., Prasetyoko, D., Suprapto, Triwahyono, S., Jalil, A.A., Rosidah, A. (2017). Esterification of Benzyl Alcohol with Acetic Acid over Mesoporous H-ZSM-5. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2): 243-250 (doi:10.9767/bcrec.12.2.806.243-250)Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.806.243-250 


2012 ◽  
Vol 134 (3) ◽  
Author(s):  
Wei-Cheng Wang ◽  
William L. Roberts ◽  
Larry F. Stikeleather

Gas phase decarboxylation of hydrolyzed free fatty acid (FFA) from canola oil has been investigated in two fix-bed reactors by changing reaction parameters such as temperatures, FFA feed rates, and H2-to-FFA molar ratios. FFA, which contains mostly C18 as well as a few C16, C20, C22, and C24 FFA, was fed into the boiling zone, evaporated, carried by hydrogen flow at the rate of 0.5–20 ml/min, and reacted with the 5% Pd/C catalyst in the reactor. Reactions were conducted atmospherically at 380–450 °C and the products, qualified and quantified through gas chromatography-flame ionization detector (GC-FID), showed mostly n-heptadecane and a few portion of n-C15, n-C19, n-C21, n-C23 as well as some cracking species. Results showed that FFA conversion increased with increasing reaction temperatures but decreased with increasing FFA feed rates and H2-to-FFA molar ratios. The reaction rates were found to decrease with higher temperature and increase with higher H2 flow rates. Highly selective heptadecane was achieved by applying higher temperatures and higher H2-to-FFA molar ratios. From the results, as catalyst loading and FFA feed rate were fixed, an optimal reaction temperature of 415 °C as well as H2-to-FFA molar ratio of 4.16 were presented. These results provided good basis for studying the kinetics of decarboxylation process.


2021 ◽  
Author(s):  
Bishwajit Changmai ◽  
Kalyani Rajkumari ◽  
diparjun das ◽  
Samuel Lalthazuala Rokhum

Synthesis and application of acid-functionalized mesoporous polymer catalyst for the synthesis of 3,4-Dihydropyrimidin-2(1H)-ones via Biginelli condensation reaction under microwave irradiation is investigated. Several analytical techniques such as FT-IR, BET, TEM, SEM and EDX were employed to characterize the synthesized polymeric catalyst. High acidity (1.15 mmol g-1 ), high surface area (90.44 m2 g -1 ) and mesoporous nature of the catalyst effectively promoted the synthesis of 3,4-Dihydropyrimidin-2(1H)-ones. Microwave irradiation shows higher yield (89-98 %) as compared to conventional heating (15-25 % yield) under our optimized reaction conditions such as 1:1:1.2 molar ratio of aldehyde/ethylacetoacetate/urea, catalyst loading of 6 wt.% (with respect to aldehyde), the temperature of 80 °C and microwave power of 50 W. The synthesized Biginelli products were fully characterized by 1H and 13C NMR. The reusability of the catalyst was investigated up to 5 successive cycles and it showed great stability towards the synthesis of 3,4-Dihydropyrimidin-2(1H)-ones without any significant depreciation in yields.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3714
Author(s):  
Kusmiyati Kusmiyati ◽  
Didik Prasetyoko ◽  
Siwi Murwani ◽  
Muthiah Nur Fadhilah ◽  
Titie Prapti Oetami ◽  
...  

This research paper describes the synthesis of a heterogeneous catalyst (Potassium hydroxide (KOH)-impregnated eggshell) from waste chicken eggshell using the wet impregnation technique. In this experiment, the catalyst was derived from eggshell that was calcined at 800 °C for 5 h. It was impregnated with KOH at various KOH concentrations (10%, 15%, 20%, and 25%). The best catalyst was obtained by eggshell impregnated with 20% KOH concentration. This result was supported by the analysis of the catalyst characterization using Fourier-transform infrared spectrometry (FT-IR), which showed that the catalyst contained CaCO3 and CaOH groups. X-ray fluorescence analysis (XRF) was also used to analyze the types of mineral contained in the catalyst, including calcium, potassium, sulfur, and other impurities. It revealed that the optimum minerals were found in the KOH-impregnated eggshell (20%) catalyst of 94.42% calcium, 5.06% potassium, and a small amount of other impurities. These optimum minerals serve as active sites to increase the biodiesel yield. Scanning electron microscopy (SEM) showed that the catalyst samples appear as small, spherical, homogenous, and solid particles. The catalytic activity was investigated by the transesterification of Reutalism trisperma oil in various types of catalyst (KOH-impregnated eggshell, eggshell, and KOH-impregnated CaO), percentages of catalyst loading (weight of 1%, 3%, 5%, 7%, and 10%) and molar ratios (methanol to oil of 6:1, 8:1, 10:1, 12:1, and 15:1) for 60 min at 60 °C. The result indicated the optimum catalyst loading was 5 wt% with an 84.57% biodiesel yield. While the best molar ratio was 12:1 (methanol:oil) with a 97.95% biodiesel yield. The optimum condition was gained using a molar ratio of 12:1, 5 wt% catalyst loading, and KOH-impregnated eggshell with a 94% biodiesel yield.


2012 ◽  
Vol 727-728 ◽  
pp. 1302-1307 ◽  
Author(s):  
Joelda Dantas ◽  
A.S. Silva ◽  
P.T.A. Santos ◽  
J.R.D. Santos ◽  
D.C. Barbosa ◽  
...  

This study aimed to assess the performance of the solid catalyst Ni0.4Cu0.1Zn0.5Fe2O4, synthesized by combustion reaction, over the methyl esterification reaction of the fatty acids present in cottonseed oil. The catalyst was characterized by XRD, FTIR pyridine absorption, Raman spectroscopy, and SEM. The reactions were conducted at 140 and 180°C with molar ratios of 1:3, 1:6 and 1:9, with 2% of catalyst and reaction time of 2 h. The XRD results showed that the single phase ferrite was obtained with surface area of 87 m2/g and with mesoporous characteristic. It was observed from the FTIR pyridine absorption only the presence of Lewis acid sites. The Raman spectra confirm the presence of the inverse spinel phase. The results indicated that at 180°C and molar ratio of 1:9, the conversion of free fatty acids was about 87%.


Sign in / Sign up

Export Citation Format

Share Document