Forming Technology for Reduction of Twist Springback in Curved Structural Part by Controlling of Stress at Flange

2020 ◽  
Vol 61 (710) ◽  
pp. 57-62
Author(s):  
Satoshi SUMIKAWA ◽  
Akinobu ISHIWATARI ◽  
Masaki URABE ◽  
Yoshikiyo TAMAI
TAPPI Journal ◽  
2019 ◽  
Vol 18 (8) ◽  
Author(s):  
JANI LEHMONEN ◽  
TIMO RANTANEN ◽  
KARITA KINNUNEN-RAUDASKOSKI

The need for production cost savings and changes in the global paper and board industry during recent years have been constants. Changes in the global paper and board industry during past years have increased the need for more cost-efficient processes and production technologies. It is known that in paper and board production, foam typically leads to problems in the process rather than improvements in production efficiency. Foam forming technology, where foam is used as a carrier phase and a flowing medium, exploits the properties of dispersive foam. In this study, the possibility of applying foam forming technology to paper applications was investigated using a pilot scale paper forming environment modified for foam forming from conventional water forming. According to the results, the shape of jet-to-wire ratios was the same in both forming methods, but in the case of foam forming, the achieved scale of jet-to-wire ratio and MD/CD-ratio were wider and not behaving sensitively to shear changes in the forming section as a water forming process would. This kind of behavior would be beneficial when upscaling foam technology to the production scale. The dryness results after the forming section indicated the improvement in dewatering, especially when foam density was at the lowest level (i.e., air content was at the highest level). In addition, the dryness results after the pressing section indicated a faster increase in the dryness level as a function of foam density, with all density levels compared to the corresponding water formed sheets. According to the study, the bonding level of water- and foam-laid structures were at the same level when the highest wet pressing value was applied. The results of the study show that the strength loss often associated with foam forming can be compensated for successfully through wet pressing.


Author(s):  
Alexander S. Lelekov ◽  
Anton V. Shiryaev

The work is devoted to modeling the growth of optically dense microalgae cultures in natural light. The basic model is based on the idea of the two-stage photoautotrophic growth of microalgae. It is shown that the increase in the intensity of sunlight in the first half of the day can be described by a linear equation. Analytical equations for the growth of biomass of microalgae and its macromolecular components are obtained. As the initial conditions, it is assumed that at the time of sunrise, the concentration of reserve biomass compounds is zero. The simulation results show that after sunrise, the growth of the microalgae culture is due only to an increase in the reserve part of the biomass, while the structural part practically does not change over six hours. Changes in the ratio of the reserve and structural parts of the biomass indicate a change in the biochemical composition of cells.


2020 ◽  
pp. 6-16
Author(s):  
V. N. Kelasev ◽  
I. L. Pervova ◽  
O. V. Kelasev

The article discusses approaches to preparing the younger generation for family life. An active-forming technology for working with adolescent and youth audience is proposed, which is focused on the development of social competence in the field of family relations. This technology is significant for the successful implementation of the National Project “Demography” 2019–2024.


2020 ◽  
Vol 110 (11-12) ◽  
pp. 838-843
Author(s):  
Philipp Müller ◽  
Bernd-Arno Behrens ◽  
Sven Hübner ◽  
Hendrik Vogt ◽  
Daniel Rosenbusch ◽  
...  

Techniken zur Steigerung der Formgebungsgrenzen in der Umformtechnik sind von hoher wirtschaftlicher Bedeutung. In dieser Arbeit wird eine Schwingungsüberlagerung im Krafthauptfluss eines Axialformprozesses zur Ausprägung einer Verzahnungsgeometrie untersucht. Die Auswirkungen der Schwingung auf die erzielbare Ausfüllung der Zahnkavitäten werden analysiert sowie die Parameter Schmierung und Oberflächengüte der Halbzeuge in ihrer kombinierten Wirkung untersucht. Es konnte eine Reduzierung der mittleren Umformkraft sowie eine Erhöhung der Formfüllung festgestellt werden. Techniques for extending the production limits in forming technology are of great economic importance. In this research, a superimposed oscillation in the main force flow of an axial forming process to form an axial gear geometry is investigated. The effects of the superimposed oscillation on the achievable form-filling of the tooth cavities are analyzed and the parameters lubrication and surface quality of the semi-finished products are investigated in their combined effect. A reduction of the averaged forming force as well as an increase of the form-filling could be achieved.


Author(s):  
S. V. Grigorieva ◽  
A. V. Olshansky

The article is devoted to the problems of maintenance of overhead power lines in the Far North of Western Siberia. For improvement of quality and reliability of power supply of consumers in the conditions of the Far North of Western Siberia, decrease in operational costs and volumes of the carried-out emergency works the hardware-software complex for expeditious inspection, assessment and forecasting of change of technical condition of constructive part of air lines (VL) of 35-220 kV is developed, the structure of the hardware-software complex of registration of the condition of constructive part of VL of 35-220 kV and structure of the hardware-software complex of storage., processing and analysis of the obtained data on the States of the constructive part of the VL 35-220 kV. 


Author(s):  
Shiro Kobayashi ◽  
Soo-Ik Oh ◽  
Taylan Altan

The application of computer-aided design and manufacturing techniques is becoming essential in modern metal-forming technology. Thus process modeling for the determination of deformation mechanics has been a major concern in research . In light of these developments, the finite element method--a technique by which an object is decomposed into pieces and treated as isolated, interacting sections--has steadily assumed increased importance. This volume addresses advances in modern metal-forming technology, computer-aided design and engineering, and the finite element method.


2012 ◽  
Vol 735 ◽  
pp. 301-306 ◽  
Author(s):  
Hai Jian Liang ◽  
Xiao Wei Wu ◽  
Yong Wang ◽  
Quan Lin Jin ◽  
Zhao Li Ma ◽  
...  

This article describes the high rate superplastic forming. The high rate superplastic forming technology is a new complex process,which integrates hot stamping and superplastic forming .It has feature of rapidity of the hot stamping and character of excellent formability of the superplastic forming.We obtained the best proportion of the hot forming and the superplastic forming through simulation experiment, and formed a car’s abonnet by applying the proportion.Compared with the high rate superplastic forming,the forming quality is better than that of hot forming. and the forming time is less than that of superplastic forming. Result shows that ,the high rate superplastic forming technology can meet the requirements for mass production.


2021 ◽  
pp. 107754632110144
Author(s):  
Yiqing Yang ◽  
Haoyang Gao ◽  
Qiang Liu

Turning cutting tool with large length–diameter ratio has been essential when machining structural part with deep cavity and in-depth hole features. However, chatter vibration is apt to occur with the increase of tool overhang. A slender turning cutting tool with a length–diameter ratio of 7 is developed by using a vibration absorber equipped with piezoelectric ceramic. The vibration absorber has dual functions of vibration transfer to the absorber mass and vibration conversion to the electrical energy via the piezoelectric effect. Equations of motion are established considering the dual damping from the piezoelectric ceramic and rubber gasket. The equivalent damping of piezoelectric ceramic is derived, and the geometries are optimized to achieve optimal vibration suppression. The modal analysis demonstrates that the cutting tool with the vibration absorber can reach 80.1% magnitude reduction. Machining tests are carried out in the end. The machining acceleration and machined surface roughness validate the vibration suppression of the VA, and the output voltage by the piezoelectric ceramic demonstrates the ability of vibration sensing.


2013 ◽  
Vol 788 ◽  
pp. 57-60
Author(s):  
Chun Cao ◽  
Chun Dong Zhu ◽  
Chen Fu

Warm pressing forming technology has been gradually applied to the forming of automotive friction materials. How to ensure product performance to achieve the target at the same time achieve the maximum energy saving is the research focus of this study. In this paper, by using finite element method, the field of automotive friction materials in warm pressing forming was analyzed, reveals the relationship between the temperature field and the heating temperature/heating time. Furthermore, the energy consumption was analyzed and compared it with hot pressing forming process. The results will have significant guiding to the process optimization in warm pressing forming.


Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 88
Author(s):  
Yupeng Xin ◽  
Yuanheng Li ◽  
Wenhui Li ◽  
Gangfeng Wang

Cavities are typical features in aeronautical structural parts and molds. For high-speed milling of multi-cavity parts, a reasonable processing sequence planning can significantly affect the machining accuracy and efficiency. This paper proposes an improved continuous peripheral milling method for multi-cavity based on ant colony optimization algorithm (ACO). Firstly, by analyzing the mathematical model of cavity corner milling process, the geometric center of the corner is selected as the initial tool feed position. Subsequently, the tool path is globally optimized through ant colony dissemination and pheromone perception for path solution of multi-cavity milling. With the advantages of ant colony parallel search and pheromone positive feedback, the searching efficiency of the global shortest processing path is effectively improved. Finally, the milling programming of an aeronautical structural part is taken as a sample to verify the effectiveness of the proposed methodology. Compared with zigzag milling and genetic algorithm (GA)-based peripheral milling modes in the computer aided manufacturing (CAM) software, the results show that the ACO-based methodology can shorten the milling time of a sample part by more than 13%.


Sign in / Sign up

Export Citation Format

Share Document