scholarly journals Response of yam varieties to soil moisture regime in Southwestern Nigeria

2021 ◽  
pp. 3-14
Author(s):  
Abayomi Eruola

A field experiment was conducted on varietal response of white yam to moisture regime in Abeokuta. The experiment comprised three varieties of yam (Efuru, Ise-osi and Oniyere), three mulching options (grass, polythene and unmulched), and two planting dates (early and late). Treatments were replicated three times using RCBD lay-out. Model for selecting planting date involved relating potential evapotranspiration (PE) to precipitation (P) in the form of 0.1PE<P < 0.5PE, partitioned for attaining optimal planting date into early {T1= Σ(P-0.1PE) ≤ 0} and late {T2 = Σ(P-0.5PE) ≤ 0}, respectively. For humid period defined by P> PE, the physiological parameters and moisture agro-climatic indices measured during phenological stages of yam grown were analyzed with respect to treatments. Result showed that T1 defined as Σ(P-0.1PE) ≤ 10 mm appeared as the best model that significantly (P < 0.05) influenced emergence rate, phenological growth and tuber yield. All yam varieties evaluated were suitable for planting with respect to yield. Efuru and Ise-osi synchronized perfectly with Actual Water Availability and produced good vegetative growth with LAI of 1.08 and 0.91 leading to higher tuber yield of 12 and 11.64 tonnes ha-1, respectively. Grass mulch had tuber yield, 4-6 tonnes ha-1greater than the polythene and unmulched plots in all varieties. Mulching significantly (P< 0.05) increased tuber yield, 6-8 tonnes ha-1than the unmulched. Conclusively, early planting with grass mulch increased tuber yield.

2021 ◽  
Vol 11 ◽  
Author(s):  
David Moseley ◽  
Marcos Paulo da Silva ◽  
Leandro Mozzoni ◽  
Moldir Orazaly ◽  
Liliana Florez-Palacios ◽  
...  

Edamame is a food-grade soybean [Glycine max (L.) Merr.] that is harvested immature between the R6 and R7 reproductive stages. To be labeled as a premium product, the edamame market demands large pod size and intense green color. A staggered harvest season is critical for the commercial industry to post-harvest process the crop in a timely manner. Currently, there is little information to assist in predicting the optimum time to harvest edamame when the pods are at their collective largest size and greenest color. The objectives of this study were to assess the impact of cultivar, planting date, and harvest date on edamame color, pod weight, and a newly minted Edamame Harvest Quality Index combining both aforementioned factors. And to predict edamame harvest quality based on phenological stages, thermal units, and planting dates. We observed that pod color and weight depended on the cultivar, planting date, and harvest date combination. Our results also indicated that edamame quality is increased with delayed planting dates and that quality was dependent on harvest date with a quadratic negative response to delaying harvest. Maximum quality depended on cultivar and planting and harvest dates, but it remained stable for an interval of 18–27 days around the peak. Finally, we observed that the number of days between R1 and harvest was consistently identified as a key factor driving edamame quality by both stepwise regression and neural network analysis. These research results will help define a planting and harvest strategy for edamame production in Arkansas and the United States Mid-South.


2021 ◽  
pp. 44-48
Author(s):  
M. M. Hossain ◽  
M. A. Kader ◽  
M. A. Kashem

Planting dates for a crop is a non-monetary input but plays a significant role in increasing the yield crop. Therefore, identifying genotype-specific planting dates is essential for obtaining the economic yield of tropical sugar beet. From this perspective, a field experiment was conducted at the Agronomy Field Laboratory, Bangladesh Agricultural University in  Bangladesh, from November 2015 to April 2016. Five sugar beet genotypes: Shubhra, Cauvery, EB-0616, EB-0626, and EB-0809 planted on four dates: 10, 20, 30 November, and 10 December. Treatments were laid out in a split-plot design replicated three times. Data revealed that planting on 10 November date, genotype EB-0809 produced the highest tuber yield, which was significantly superior to any other genotype combined with other planting dates. It was found that every ten days delay of planting from 10 November to 30 December reduced the tuber yield by 30, 43, and 55%, respectively. Results confirmed that planting the EB-0809 genotype on 10 November is ideal to obtain the highest tuber yield of tropical sugar beet in Bangladesh.


2014 ◽  
Vol 1 (1) ◽  
pp. 25-29
Author(s):  
Rahim Mohammadian ◽  
Behnam Tahmasebpour ◽  
Peyvand Samimifar

A factorial experiment was conducted with a completely randomized design to evaluate the effects of planting date and density on calendula herbs and peppermint. It had 3 replicates and was done in Khosroshahr research farm, Tabriz in 2006. Under studied factors were: 3 planting dates (10 May, 25 May and 10 June) in 4 densities (25, 35, 45, 55) of the plant in square meters. The results of variance a nalysis showed that there was 1% probability significant difference between the effects of planting date and bush density on the leave number, bush height and the bush dry weight. But the mutual effect of the plant date in mentioned traits density was insignificant. Regarding the traits mean comparison, the total maximum dry weight was about the 55 bush density in mm. Also, the bush high density in mm causes the bush growth and its mass reduction. When there is the density grain, the flower number will increase due to bush grain in surface unit. Overall, we can conclude that 10 June planting and 45 bush density in mm is the most suitable items and results in favored production with high essence for these crops.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 523c-523
Author(s):  
Siegfried Zerche

Refined nutrient delivery systems are important for environmentally friendly production of cut flowers in both soil and hydroponic culture. They have to be closely orientated at the actual nutrient demand. To solve current problems, express analysis and nutrient uptake models have been developed in horticulture. However, the necessity of relatively laborious analysis or estimation of model input parameters have prevented their commercial use up to now. For this reason, we studied relationships between easily determinable parameters of plant biomass structure as shoot height, plant density and dry matter production as well as amount of nitrogen removal of hydroponically grown year-round cut chrysanthemums. In four experiments (planting dates 5.11.91; 25.3.92; 4.1.93; 1.7.93) with cultivar `Puma white' and a fixed plant density of 64 m2, shoots were harvested every 14 days from planting until flowering, with dry matter, internal N concentration and shoot height being measured. For each planting date, N uptake (y) was closely (r2 = 0.94; 0.93; 0.84; 0.93, respectively) related to shoot height (x) at the time of cutting and could be characterized by the equation y = a * × b. In the soilless cultivation system, dry matter concentrations of N remained constant over the whole growing period, indicating non-limiting nitrogen supply. In agreement with constant internal N concentrations, N uptake was linearly related (r2 = 0.94 to 0.99) to dry matter accumulation. It is concluded that shoot height is a useful parameter to include in a simple model of N uptake. However, in consideration of fluctuating greenhouse climate conditions needs more sophisticated approaches including processes such as water uptake and photosynthetically active radiation.


2002 ◽  
Vol 66 (1) ◽  
pp. 202 ◽  
Author(s):  
M. Tejedor ◽  
C. C. Jiménez ◽  
F. Díaz

1997 ◽  
Vol 24 (1) ◽  
pp. 52-59
Author(s):  
S. D. Stewart ◽  
K. L. Boweri ◽  
T. P. Mack ◽  
J. H. Edwards

Abstract Three row spacings and two planting dates for peanuts, Arachis hypogaea L., were examined in 1993 and 1994 to determine the influence of the canopy environment on lesser cornstalk borer, Elasmopalpus lignosellus (Zeller) (Lepidoptera: Pyralidae), other arthropods, and alflatoxigenic fungi. Climatically, 1993 and 1994 were disparate years. Decreasing row spacing increased relative leaf area and light interception by the canopy but, compared to difference between planting dates or years, had a relatively small impact on soil temperatures and relative humidity within the canopy. Late planting produced smaller plants, retarded canopy development, and reduced yield in both years, but especially in 1993 when it was hot and dry. The wide row spacing did not yield as well as twin and normal row spacings in either year. Lesser cornstalk borer damage and aflatoxin concentration were higher in the late planting than in the early planting of 1993, but were unaffected by row spacing. Fewer predatory arthropods were caught as row spacing decreased in both beat and pitfall samples, but planting date had variable effects. Prevailing climatic conditions and planting date appeared to be more important in influencing the canopy environment and pest densities than was row spacing.


2003 ◽  
Vol 51 (1) ◽  
pp. 25-35 ◽  
Author(s):  
A. Y. Allam ◽  
G. R. El-Nagar ◽  
A. H. Galal

This investigation was carried out at the Experimental Farm of Assiut University during the summers of 2000 and 2001 to study the responses of two sunflower hybrids (Vidoc and Euroflora) to planting dates (May 1st, June 1st and July 1st) and planting densities (55,533, 83,300 and 166,600 plants/ha). The results indicated that the two varieties differed highly significantly in all studied traits except oil yield/ha. The highest seed yield (3.64 t/ha) was obtained with the variety Vidoc. In addition, the results revealed that the planting date exerted a highly significant influence on all vegetative growth traits along with yield and its components. Increasing plant density increased the seed and oil yield/ha. By contrast, the stem diameter, head diameter, 100-seed weight and seed yield/plant decreased with increasing plant density. The interaction between varieties and plant density had a highly significant effect on head diameter. The greatest head diameter (20.06 cm) was recorded for the variety Vidoc planted at lower density. Concerning the interaction between planting density and planting date, the highest seed yield (4.47 t/ha) was obtained from dense plants at the early sowing date, and the highest oil % (45.32) at the late planting date and the lowest plant density. The second order interaction exerted a highly significant influence on stem and head diameter in addition to seed yield/plant, where the highest value (78.13 g/plant) was obtained with the variety Vidoc planted on May 1st at the lowest plant density.


Weed Science ◽  
2015 ◽  
Vol 63 (2) ◽  
pp. 477-490 ◽  
Author(s):  
John R. Teasdale ◽  
Steven B. Mirsky

Insufficient weed control is a major constraint to adoption of reduced-tillage practices for organic grain production. Tillage, cover crop management, and crop planting date are factors that influence emergence periodicity and growth potential of important weed species in these systems. We assessed two hairy vetch cover crop management practices, disk-kill and roll-kill, across a range of corn planting dates from early May to late June in three experiments in Beltsville, MD. Patterns of seed dormancy, emergence, and early weed growth were determined for overseeded populations of common ragweed, giant foxtail, and smooth pigweed, three important species in the Mid-Atlantic states that represent early to late emergence. Common ragweed emergence was lowest and dormancy was highest of the three species across all planting dates. Giant foxtail emergence was higher than the other species in roll-killed hairy vetch and included a significant number of seeds that germinated before rolling operations in late June. Smooth pigweed had the highest emergence and lowest dormancy in disk-killed hairy vetch in June. Individual giant foxtail plant weight was higher in roll-killed than disk-killed hairy vetch in 2 of 3 yr, whereas that of smooth pigweed plants was higher in disk-killed than roll-killed vetch in 2 of 3 yr. Giant foxtail was the dominant species in roll-killed hairy vetch (averaged 79% of total weed biomass at corn silking), probably because of early germination and establishment before rolling operations. Smooth pigweed was the dominant species in disk-killed hairy vetch at June planting dates (averaged 77% of total weed biomass), probably because of high growth rates under warm conditions in tilled soil. This research demonstrated that cover crop management practices and the timing of planting operations can shift the dominant species of weed communities in organic farming systems and must be considered in long-term weed management planning.


Sign in / Sign up

Export Citation Format

Share Document