scholarly journals Identification of crucial genes involved in pathogenesis of regional weakening of the aortic wall

Hereditas ◽  
2021 ◽  
Vol 158 (1) ◽  
Author(s):  
Hong Lin Zu ◽  
Hong Wei Liu ◽  
Hai Yang Wang

Abstract Background The diameter of the abdominal aortic aneurysm (AAA) is the most commonly used parameter for the prediction of occurrence of AAA rupture. However, the most vulnerable region of the aortic wall may be different from the most dilated region of AAA under pressure. The present study is the first to use weighted gene coexpression network analysis (WGCNA) to detect the coexpressed genes that result in regional weakening of the aortic wall. Methods The GSE165470 raw microarray dataset was used in the present study. Differentially expressed genes (DEGs) were filtered using the “limma” R package. DEGs were assessed by Gene Ontology biological process (GO-BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. WGCNA was used to construct the coexpression networks in the samples with regional weakening of the AAA wall and in the control group to detect the gene modules. The hub genes were defined in the significant functional modules, and a hub differentially expressed gene (hDEG) coexpression network was constructed with the highest confidence based on protein–protein interactions (PPIs). Molecular compound detection (MCODE) was used to identify crucial genes in the hDEG coexpression network. Crucial genes in the hDEG coexpression network were validated using the GSE7084 and GSE57691 microarray gene expression datasets. Result A total of 350 DEGs were identified, including 62 upregulated and 288 downregulated DEGs. The pathways were involved in immune responses, vascular smooth muscle contraction and cell–matrix adhesion of DEGs in the samples with regional weakening in AAA. Antiquewhite3 was the most significant module and was used to identify downregulated hDEGs based on the result of the most significant modules negatively related to the trait of weakened aneurysm walls. Seven crucial genes were identified and validated: ACTG2, CALD1, LMOD1, MYH11, MYL9, MYLK, and TPM2. These crucial genes were associated with the mechanisms of AAA progression. Conclusion We identified crucial genes that may play a significant role in weakening of the AAA wall and may be potential targets for medical therapies and diagnostic biomarkers. Further studies are required to more comprehensively elucidate the functions of crucial genes in the pathogenesis of regional weakening in AAA.

2020 ◽  
Vol 4 (5) ◽  
Author(s):  
Jian Xu ◽  
Liye Fan ◽  
Feng Qi ◽  
Xia Xiu

Objective: To study the differential lncRNA / mRNA expression profiles of placental tissues in patients with gestational hypertension, analyze their possible mechanisms of action, and explore their target genes and small molecule drug-related lncRNAs. Methods: Three patients with gestational hypertension who were treated in our hospital from May 2018 to May 2019 were selected as the research subjects and three healthy pregnant women who underwent a prenatal examination in the same hospital were selected as the control group. The placental tissues were taken from the patients. RNA-sequencing was performed to construct lncRNA/mRNA differential expression profiles; screening differentially expressed lncRNAs were used to predict target genes, and GO and KEGG enrichment analysis predicted the biological functions of target genes and the enriched signal pathways, respectively. Protein-protein interaction network, lncRNA-miRNA-mRNA network, and differentially expressed gene-small molecule drug association networks were constructed. Results: RNA-seq analysis revealed 19 differentially expressed lncRNA (4 up-regulated; 15 down-regulated) (P<0.05). Moreover, 423 differentially expressed genes (DEGs) (84 up-regulated; 339 down-regulated)(P<0.05). GO and KEGG enrichment analysis found that gestational hypertension is mainly related to endothelial cell damage, inflammatory response, abnormal immune regulation, and abnormal trophoblast invasion. The PPI network and lncRNA-miRNA-mRNA network were constructed. Differentially expressed gene-drug small molecule prediction results found 19 pairs of differentially gene-small drug relationship pairs, mainly including antibody, inhibitor et al. Conclusion: Differently expressed lncRNAs in the placenta of patients with gestational hypertension can participate in the regulation of multiple biological functional level-related signal pathways through targeted regulation of their target genes, and play an important role in the occurrence and development of gestational hypertension. The predicted small molecule drug can be used as a reference for clinical treatment.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 36
Author(s):  
Lei Xu ◽  
Wenyi Zhang ◽  
Hui Qiao ◽  
Sufei Jiang ◽  
Yiwei Xiong ◽  
...  

As the basic element of aerobic animal life, oxygen participates in most physiological activities of animals. Hypoxia stress is often the subject of aquatic animal research. Macrobrachium nipponense, an economically important aquatic animal in southern China, has been affected by hypoxia for many years and this has resulted in a large amount of economic loss due to its sensitivity to hypoxia; Metabolism and transcriptome data were combined in the analysis of the hepatopancreas of M. nipponense in different physiological states under hypoxia; A total of 108, 86, and 48 differentially expressed metabolites (DEMs) were found in three different comparisons (survived, moribund, and dead shrimps), respectively. Thirty-two common DEMs were found by comparing the different physiological states of M. nipponense with the control group in response to hypoxia. Twelve hypoxia-related genes were identified by screening and analyzing common DEMs. GTP phosphoenolpyruvate carboxykinase (PEPCK) was the only differentially expressed gene that ranked highly in transcriptome analysis combined with metabolome analysis. PEPCK ranked highly both in transcriptome analysis and in combination with metabolism analysis; therefore, it was considered to have an important role in hypoxic response. This manuscript fills the one-sidedness of the gap in hypoxia transcriptome analysis and reversely deduces several new genes related to hypoxia from metabolites. This study contributes to the clarification of the molecular process associated with M. nipponense under hypoxic stress.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6306 ◽  
Author(s):  
Gaoyang Chen ◽  
Lei Zhong ◽  
Qingyu Wang ◽  
Zhaoyan Li ◽  
Jing Shang ◽  
...  

Background It has been well known that the degeneration of hip articular cartilage with osteonecrosis of the femoral head (ONFH) increases the instability of hip and accelerates the development process of ONFH. A better understanding of the expression of chondrogenesis-related and arthritis-related genes of cartilage along with the progression of ONFH seems to be essential for further insight into the molecular mechanisms of ONFH pathogenesis. Methods We analyzed the differentially expressed gene profile (GSE74089) of human hip articular cartilage with ONFH. The functions and pathway enrichments of differentially expressed genes (DEGs) were analyzed via GO and KEGG analysis. The expression of six selected critical chondrogenesis-related and four arthritis-related genes in eight human hip articular cartilage with femoral neck fracture (FNF) and 26 human hip articular cartilage with different stages ONFH (6 cases of Ficat stage II, 10 cases of Ficat stage III and 10 cases of Ficat stage IV) were detected. Results A total of 2,174 DEGs, including 1,482 up-regulated and 692 down-regulated ones, were obtained in the ONFH cartilage specimens compared to the control group. The GO and KEGG enrichment analysis indicated that the function of these DEGs mainly enriched in extracellular matrix, angiogenesis, antigen processing and presentation. The results showed a significant stepwise up-expression of chondrogenesis-related genes, including MMP13, ASPN, COL1A1, OGN, COL2A1 and BMP2, along with the progression of ONFH. The arthritis-related genes IL1β, IL6 and TNFα were only found up-expressed in Ficat IV stage which indicated that the arthritis-related molecular changes were not significant in the progression of ONFH before Ficat III stage. However, the arthritis-related gene PTGS2 was significant stepwise up-expression along with the progression of ONFH which makes it to be a sensitive arthritis-related biomarker of ONFH. Conclusion Expression changes of six chondrogenesis-related and four arthritis-related genes were found in hip articular cartilage specimens with different ONFH Ficat stages. These findings are expected to a get a further insight into the molecular mechanisms of ONFH progression.


2020 ◽  
Vol 26 (29) ◽  
pp. 3619-3630
Author(s):  
Saumya Choudhary ◽  
Dibyabhaba Pradhan ◽  
Noor S. Khan ◽  
Harpreet Singh ◽  
George Thomas ◽  
...  

Background: Psoriasis is a chronic immune mediated skin disorder with global prevalence of 0.2- 11.4%. Despite rare mortality, the severity of the disease could be understood by the accompanying comorbidities, that has even led to psychological problems among several patients. The cause and the disease mechanism still remain elusive. Objective: To identify potential therapeutic targets and affecting pathways for better insight of the disease pathogenesis. Method: The gene expression profile GSE13355 and GSE14905 were retrieved from NCBI, Gene Expression Omnibus database. The GEO profiles were integrated and the DEGs of lesional and non-lesional psoriasis skin were identified using the affy package in R software. The Kyoto Encyclopaedia of Genes and Genomes pathways of the DEGs were analyzed using clusterProfiler. Cytoscape, V3.7.1 was utilized to construct protein interaction network and analyze the interactome map of candidate proteins encoded in DEGs. Functionally relevant clusters were detected through Cytohubba and MCODE. Results: A total of 1013 genes were differentially expressed in lesional skin of which 557 were upregulated and 456 were downregulated. Seven dysregulated genes were extracted in non-lesional skin. The disease gene network of these DEGs revealed 75 newly identified differentially expressed gene that might have a role in development and progression of the disease. GO analysis revealed keratinocyte differentiation and positive regulation of cytokine production to be the most enriched biological process and molecular function. Cytokines -cytokine receptor was the most enriched pathways. Among 1013 identified DEGs in lesional group, 36 DEGs were found to have altered genetic signature including IL1B and STAT3 which are also reported as hub genes. CCNB1, CCNA2, CDK1, IL1B, CXCL8, MKI 67, ESR1, UBE2C, STAT1 and STAT3 were top 10 hub gene. Conclusion: The hub genes, genomic altered DEGs and other newly identified differentially dysregulated genes would improve our understanding of psoriasis pathogenesis, moreover, the hub genes could be explored as potential therapeutic targets for psoriasis.


2019 ◽  
Vol 17 (4) ◽  
pp. 290-303
Author(s):  
Sangsang Li ◽  
Yanfei Li ◽  
Bingpeng Deng ◽  
Jie Yan ◽  
Yong Wang

Background: The abuse of psychostimulants such as methamphetamine (METH) is common in human immunodeficiency virus (HIV)-infected individuals. Acquired immunodeficiency syndrome (AIDS) patients taking METH and antiretroviral drugs could suffer severe neurologic damage and cognitive impairment. Objective: To reveal the underlying neuropathologic mechanisms of an HIV protease inhibitor (PI) combined with METH, growth-inhibition tests of dopaminergic cells and RNA sequencing were performed. Methods: A combination of METH and PI caused more growth inhibition of dopaminergic cells than METH alone or a PI alone. Furthermore, we identified differentially expressed gene (DEG) patterns in the METH vs. untreated cells (1161 genes), PI vs. untreated cells (16 genes), METH-PI vs. PI (3959 genes), and METH-PI vs. METH groups (14 genes). Results: The DEGs in the METH-PI co-treatment group were verified in the brains of a mouse model using quantitative polymerase chain reaction and were involved mostly in the regulatory functions of cell proliferation and inflammation. Conclusion: Such identification of key regulatory genes could facilitate the study of their neuroprotective potential in the users of METH and PIs.


2020 ◽  
Vol 15 ◽  
Author(s):  
Chen-An Tsai ◽  
James J. Chen

Background: Gene set enrichment analyses (GSEA) provide a useful and powerful approach to identify differentially expressed gene sets with prior biological knowledge. Several GSEA algorithms have been proposed to perform enrichment analyses on groups of genes. However, many of these algorithms have focused on identification of differentially expressed gene sets in a given phenotype. Objective: In this paper, we propose a gene set analytic framework, Gene Set Correlation Analysis (GSCoA), that simultaneously measures within and between gene sets variation to identify sets of genes enriched for differential expression and highly co-related pathways. Methods: We apply co-inertia analysis to the comparisons of cross-gene sets in gene expression data to measure the costructure of expression profiles in pairs of gene sets. Co-inertia analysis (CIA) is one multivariate method to identify trends or co-relationships in multiple datasets, which contain the same samples. The objective of CIA is to seek ordinations (dimension reduction diagrams) of two gene sets such that the square covariance between the projections of the gene sets on successive axes is maximized. Simulation studies illustrate that CIA offers superior performance in identifying corelationships between gene sets in all simulation settings when compared to correlation-based gene set methods. Result and Conclusion: We also combine between-gene set CIA and GSEA to discover the relationships between gene sets significantly associated with phenotypes. In addition, we provide a graphical technique for visualizing and simultaneously exploring the associations of between and within gene sets and their interaction and network. We then demonstrate integration of within and between gene sets variation using CIA and GSEA, applied to the p53 gene expression data using the c2 curated gene sets. Ultimately, the GSCoA approach provides an attractive tool for identification and visualization of novel associations between pairs of gene sets by integrating co-relationships between gene sets into gene set analysis.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1003
Author(s):  
Margarita L. Martinez-Fierro ◽  
Idalia Garza-Veloz

microRNAs are important regulators of cell processes and have been proposed as potential preeclampsia biomarkers. We evaluated serum microRNA expression profiling to identify microRNAs involved in preeclampsia development. Serum microRNA expression profiling was evaluated at 12, 16, and 20 weeks of gestation (WG), and at the time of preeclampsia diagnosis. Two groups were evaluated using TaqMan low-density array plates: a control group with 18 normotensive pregnant women and a case group with 16 patients who developed preeclampsia during the follow-up period. Fifty-three circulating microRNAs were differentially expressed between groups (p < 0.05). Compared with controls, hsa-miR-628-3p showed the highest relative quantity values (at 12 WG = 7.7 and at 20 WG = 3.45) and the hsa-miRs -151a-3p and -573 remained differentially expressed from 16 to 20 WG (p < 0.05). Signaling pathways including cancer-related, axon guidance, Neurotrophin, GnRH, VEGF, and B/T cell receptor, were most commonly altered. Further target gene prediction revealed that nuclear factor of activated T-cells 5 gene was included among the transcriptional targets of preeclampsia-modulated microRNAs. Specific microRNAs including hsa-miRs -628-3p, -151a-3p, and -573 were differentially expressed in serum of pregnant women before they developed preeclampsia compared with controls and their participation in the preeclampsia development should be considered.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jinhang Zhu ◽  
Di Zhang ◽  
Ting Wang ◽  
Zhiliang Chen ◽  
Luan Chen ◽  
...  

AbstractHepatic fibrosis is a spontaneous wound-healing response triggered by chronic liver injury. Pien Tze Huang (PZH), a traditional Chinese herbal medicine, has been widely used to treat various hepatic diseases in Asia. We used a CCl4-induced mouse model to establish a PZH group of hepatic fibrosis mice treated with PZH and a control group of hepatic fibrosis mice without any treatment. We performed RNA-seq and mass spectrometry sequencing to investigate the mechanism of the PZH response in hepatic fibrosis and identified multiple differentially expressed transcripts (DETs) and proteins (DEPs) that may be drug targets of PZH. Liver functional indices, including serum albumin (ALB), alanine aminotransferase (ALT) and aspartate aminotransferase (AST), were significantly decreased in the PZH treatment group (P < 0.05) in the eighth week. Hematoxylin–eosin (HE), Masson and Sirius red staining demonstrated that PZH significantly inhibited infiltration of inflammatory cells and collagen deposition. A total of 928 transcripts and 138 proteins were differentially expressed in PZH-treated mice compared to the control group. Gene Ontology (GO) enrichment analysis suggested that PZH may alleviate liver injury and fibrosis by enhancing the immune process. Taken together, our results revealed that multiple DETs and DEPs may serve as drug targets of PZH in hepatic fibrosis patient in future clinical practice.


2021 ◽  
Vol 22 (12) ◽  
pp. 6373
Author(s):  
Ahmad Jalloh ◽  
Antwoine Flowers ◽  
Charles Hudson ◽  
Dale Chaput ◽  
Jennifer Guergues ◽  
...  

Microglial activity in the aging neuroimmune system is a central player in aging-related dysfunction. Aging alters microglial function via shifts in protein signaling cascades. These shifts can propagate neurodegenerative pathology. Therapeutics require a multifaceted approach to understand and address the stochastic nature of this process. Polyphenols offer one such means of rectifying age-related decline. Our group used mass spectrometry (MS) analysis to explicate the complex nature of these aging microglial pathways. In our first experiment, we compared primary microglia isolated from young and aged rats and identified 197 significantly differentially expressed proteins between these groups. Then, we performed bioinformatic analysis to explore differences in canonical signaling cascades related to microglial homeostasis and function with age. In a second experiment, we investigated changes to these pathways in aged animals after 30-day dietary supplementation with NT-020, which is a blend of polyphenols. We identified 144 differentially expressed proteins between the NT-020 group and the control diet group via MS analysis. Bioinformatic analysis predicted an NT-020 driven reversal in the upregulation of age-related canonical pathways that control inflammation, cellular metabolism, and proteostasis. Our results highlight salient aspects of microglial aging at the level of protein interactions and demonstrate a potential role of polyphenols as therapeutics for age-associated dysfunction.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 165-166
Author(s):  
Elisa B Carvalho ◽  
Letícia P Sanglard ◽  
Karolina B Nascimento ◽  
Javier M Meneses ◽  
Daniel R Casagrande ◽  
...  

Abstract Gestating cows have an increased nutrient demand to meet the needs of developing the fetus and the mid-gestation is a critical period for the fetal skeletal muscle development. The aim of this study was to evaluate the skeletal muscle transcriptome in the progeny as a function of the maternal protein nutrition during mid-gestation. Eleven Tabapuã cows and their male calves were used in this study. In the first third of gestation (0 to 100 days of gestation; dg), all cows were kept on pasture. From 100 to 200 dg, the control group (CTRL; 7 animals) received a basal diet achieving 5.5% crude protein (CP), whereas the supplemented group (SUPPL; 4 animals) received a basal diet plus protein supplementation (40% CP). After 200 dg, all animals received the same diet. Weaning was performed at 205 ± 7.5 days of age and animals were kept on pasture until reaching 240 days of age, when they were transferred to a feedlot. Muscle samples were collected at 260 days of age and RNA was extracted for RNA-seq analysis. Gene expression data was analyzed with a negative binomial model to identify (q-value ≤ 0.05) differentially expressed genes (DEG) between treatments. A total of 716 DEG were identified (289 DEG up-regulated and 427 down-regulated in SUPPL group; q-value ≤ 0.05). From the 10 most significant down-regulated DEG in the SUPPL group, two genes associated with apoptotic process were identified: MAPK8IP1 and GRINA, with log2 Fold-Changes (log2FC) of 1.04 and 0.49, respectively. From the 10 most significant up-regulated DEG in the SUPPL group, mTOR was identified, with log2FC=0.31. This is a well-known gene involved in muscle protein synthesis. In conclusion, maternal protein supplementation during mid-gestation affects the expression of genes related to energy metabolism and muscle development, which can lead to long-term impacts on production efficiency.


Sign in / Sign up

Export Citation Format

Share Document