genetic interference
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 12)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Chaolei Liu ◽  
Yiwei Cao ◽  
Yufeng Hua ◽  
Guijie Du ◽  
Qing Liu ◽  
...  

Manipulation of the distribution and frequency of meiotic recombination events to increase genetic diversity and disrupting genetic interference are long-standing goals in crop breeding. However, attenuation of genetic interference is usually accompanied by a reduction in recombination frequency and subsequent loss of plant fertility. In the present study, we generated null mutants of the ZEP1 gene, which encodes the central component of the meiotic synaptonemal complex (SC), in a hybrid rice using CRISPR/Cas9. The null mutants exhibited absolute male sterility but maintained nearly unaffected female fertility. By pollinating the zep1 null mutants with pollen from indica rice variety 93-11, we successfully conducted genetic analysis and found that genetic recombination frequency was greatly increased and genetic interference was completely eliminated in the absence of ZEP1. The findings provided direct evidence to support the controversial hypothesis that SC is involved in mediating interference. Additionally, the remained female fertility of the null mutants makes it possible to break linkage drag. Our study provides a potential approach to increase genetic diversity and fully eliminate genetic interference in rice breeding.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Amal Senevirathne ◽  
Chamith Hewawaduge ◽  
John Hwa Lee

AbstractEfficient in vivo delivery of a CRISPR/Cas9 plasmid is of paramount importance for effective therapy. Here, we investigated the usability of Salmonella as a plasmid carrier for in vivo therapy against virus-induced cancer using Marek’s disease virus (MDV) as a model for study in chickens. A green fluorescent protein-expressing CRISPR/Cas9 plasmid encoding the virulence gene pp38 was constructed against Marek’s disease virus. Therapeutic plasmids were transformed into Salmonella carrying lon and sifA gene deletions. The animals in 5 groups were intraperitoneally inoculated with phosphate-buffered saline, vector control, or Salmonella before or after MDV infection, or left uninfected as a naïve control. Therapeutic effectiveness was evaluated by observing disease outcomes and the viral copy number in peripheral blood mononuclear cells. The efficacy of plasmid delivery by Salmonella was 13 ± 1.7% in the spleen and 8.0 ± 1.8% in the liver on the 6th day post-infection. The Salmonella-treated groups showed significant resistance to MDV infection. The maximum effect was observed in the group treated with Salmonella before MDV infection. None of the chickens fully recovered; however, the results suggested that timely delivery of Salmonella could be effective for in vivo CRISPR/Cas9-mediated genetic interference against highly pathogenic MDV. The use of Salmonella in CRISPR systems provides a simpler and more efficient platform for in vivo therapy with CRISPR than the use of conventional in vivo gene delivery methods and warrants further development.


2021 ◽  
Vol 22 (17) ◽  
pp. 9222 ◽  
Author(s):  
Silvia Melina Velasquez ◽  
Xiaoyuan Guo ◽  
Marçal Gallemi ◽  
Bibek Aryal ◽  
Peter Venhuizen ◽  
...  

Size control is a fundamental question in biology, showing incremental complexity in plants, whose cells possess a rigid cell wall. The phytohormone auxin is a vital growth regulator with central importance for differential growth control. Our results indicate that auxin-reliant growth programs affect the molecular complexity of xyloglucans, the major type of cell wall hemicellulose in eudicots. Auxin-dependent induction and repression of growth coincide with reduced and enhanced molecular complexity of xyloglucans, respectively. In agreement with a proposed function in growth control, genetic interference with xyloglucan side decorations distinctly modulates auxin-dependent differential growth rates. Our work proposes that auxin-dependent growth programs have a spatially defined effect on xyloglucan’s molecular structure, which in turn affects cell wall mechanics and specifies differential, gravitropic hypocotyl growth.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1643
Author(s):  
Elena Bianchetti ◽  
Sierra J. Bates ◽  
Trang T. T. Nguyen ◽  
Markus D. Siegelin ◽  
Kevin A. Roth

Glioblastoma is a high-grade glial neoplasm with a patient survival of 12–18 months. Therefore, the identification of novel therapeutic targets is an urgent need. RAB38 is a GTPase protein implicated in regulating cell proliferation and survival in tumors. The role of RAB38 in glioblastoma is relatively unexplored. Here, we test the hypothesis that RAB38 regulates glioblastoma growth using human glioblastoma cell lines. We found that genetic interference of RAB38 resulted in a decrease in glioblastoma growth through inhibition of proliferation and cell death induction. Transcriptome analysis showed that RAB38 silencing leads to changes in genes related to mitochondrial metabolism and intrinsic apoptosis (e.g., Bcl-xL). Consistently, rescue experiments demonstrated that loss of RAB38 causes a reduction in glioblastoma viability through downregulation of Bcl-xL. Moreover, RAB38 knockdown inhibited both glycolysis and oxidative phosphorylation. Interference with RAB38 enhanced cell death induced by BH3-mimetics. RAB38 antagonists are under development, but not yet clinically available. We found that FDA-approved statins caused a rapid reduction in RAB38 protein levels, increased cell death, and phenocopied some of the molecular changes elicited by loss of RAB38. In summary, our findings suggest that RAB38 is a potential therapeutic target for glioblastoma treatment.


Fermentation ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 20 ◽  
Author(s):  
Yeseren Kayacan ◽  
Thijs Van Mieghem ◽  
Filip Delvaux ◽  
Freddy R. Delvaux ◽  
Ronnie Willaert

Flocculation or cell aggregation is a well-appreciated characteristic of industrial brewer’s strains, since it allows removal of the cells from the beer in a cost-efficient and environmentally-friendly manner. However, many industrial strains are non-flocculent and genetic interference to increase the flocculation characteristics are not appreciated by the consumers. We applied adaptive laboratory evolution (ALE) to three non-flocculent, industrial Saccharomyces cerevisiae brewer’s strains using small continuous bioreactors (ministats) to obtain an aggregative phenotype, i.e., the “snowflake” phenotype. These aggregates could increase yeast sedimentation considerably. We evaluated the performance of these evolved strains and their produced flavor during lab scale beer fermentations. The small aggregates did not result in a premature sedimentation during the fermentation and did not result in major flavor changes of the produced beer. These results show that ALE could be used to increase the sedimentation behavior of non-flocculent brewer’s strains.


2020 ◽  
Vol 110 (2) ◽  
pp. 278-286
Author(s):  
Xue-Qiang Cao ◽  
Xing-Yu Ouyang ◽  
Bo Chen ◽  
Kai Song ◽  
Lian Zhou ◽  
...  

A characteristic feature of phytopathogenic Xanthomonas bacteria is the production of yellow membrane-bound pigments called xanthomonadins. Previous studies showed that 3-hydroxybenzoic acid (3-HBA) was a xanthomonadin biosynthetic intermediate and also, that it had a signaling role. The question of whether the structural isomers 4-HBA and 2-HBA (salicylic acid) have any role in xanthomonadin biosynthesis remained unclear. In this study, we have selectively eliminated 3-HBA, 4-HBA, or the production of both by expression of the mhb, pobA, and pchAB gene clusters in the Xanthomonas campestris pv. campestris strain XC1. The resulting strains were different in pigmentation, virulence factor production, and virulence. These results suggest that both 3-HBA and 4-HBA are involved in xanthomonadin biosynthesis. When both 3-HBA and 4-HBA are present, X. campestris pv. campestris prefers 3-HBA for Xanthomonadin-A biosynthesis; the 3-HBA–derived Xanthomonadin-A was predominant over the 4-HBA–derived xanthomonadin in the wild-type strain XC1. If 3-HBA is not present, then 4-HBA is used for biosynthesis of a structurally uncharacterized Xanthomonadin-B. Salicylic acid had no effect on xanthomonadin biosynthesis. Interference with 3-HBA and 4-HBA biosynthesis also affected X. campestris pv. campestris virulence factor production and reduced virulence in cabbage and Chinese radish. These findings add to our understanding of xanthomonadin biosynthetic mechanisms and further help to elucidate the biological roles of xanthomonadins in X. campestris pv. campestris adaptation and virulence in host plants.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi36-vi36
Author(s):  
Yiru Zhang ◽  
Trang Nguyen ◽  
Junfei Zhao ◽  
Enyuan Shang ◽  
Consuelo Torrini ◽  
...  

Abstract The receptor kinase, c-MET, has emerged as a target for glioblastoma therapy. However, treatment resistance evolves inevitably. By performing a global metabolite screen with metabolite set enrichment coupled with transcriptome and gene set enrichment analysis and proteomic screening, we have identified substantial reprogramming of tumor metabolism, involving oxidative phosphorylation and fatty acid oxidation (FAO) with a substantial accumulation of acyl-carnitines accompanied by an increase of PGC1a in response to genetic (shRNA and CRISPR/Cas9) and pharmacological (crizotinib) inhibition of c-MET. Extracellular flux and carbon tracing analyses (U-13C-Glucose and U-13C-Glutamine) demonstrated enhanced oxidative metabolism, which was driven by FAO and supported by increased anaplerosis of glucose carbons. These findings were observed in concert with increased number and fusion of mitochondria and production of reactive oxygen species (ROS). Genetic interference with PGC1a rescued this oxidative phenotype driven by c-MET inhibition. Silencing and chromatin immunoprecipitation experiments demonstrated that CREB regulates the expression of PGC1a in the context of c-MET inhibition. Interference with both oxidative phosphorylation (metformin, oligomycin) and beta-oxidation of fatty acids (etomoxir) enhanced the anti-tumor efficacy of c-MET inhibition. Moreover, based on a high-throughput drug screen, we show that gamitrinib along with c-MET inhibition results in synergistic cell death. Finally, utilizing patient-derived xenograft models, we provide evidence that the combination treatments (crizotinib+etomoxir and crizotinib+gamitrinib) were significantly more efficacious than single treatment without induction of toxicity. Collectively, we have unraveled the mechanistic underpinnings of c-MET inhibitor treatment and identified novel combination therapies that may enhance the therapeutic efficacy of c-MET inhibition.


2019 ◽  
Author(s):  
Silvia Melina Velasquez ◽  
Xiaoyuan Guo ◽  
Marçal Gallemi ◽  
Bibek Aryal ◽  
Peter Venhuizen ◽  
...  

Size control is a fundamental question in biology, showing incremental complexity in case of plants whose cells possess a rigid cell wall. The phytohormone auxin is a vital growth regulator with central importance for differential growth control. Here we show that growth inducing and repressing auxin conditions correlate with reduced and enhanced complexity of extracellular xyloglucans, respectively. In agreement, genetic interference with xyloglucan complexity distinctly modulates auxin-dependent differential growth rates. Our work proposes that an auxin-dependent, spatially defined effect on xyloglucan structure and its effect on cell wall mechanics specify differential, gravitropic hypocotyl growth.


2019 ◽  
Vol 20 (19) ◽  
pp. 4752 ◽  
Author(s):  
Sabrina Kaiser ◽  
Ahmed Eisa ◽  
Jürgen Kleine-Vehn ◽  
David Scheuring

The dimension of the plants largest organelle—the vacuole—plays a major role in defining cellular elongation rates. The morphology of the vacuole is controlled by the actin cytoskeleton, but molecular players remain largely unknown. Recently, the Networked (NET) family of membrane-associated, actin-binding proteins has been identified. Here, we show that NET4A localizes to highly constricted regions of the vacuolar membrane and contributes to vacuolar morphology. Using genetic interference, we found that deregulation of NET4 abundance increases vacuolar occupancy, and that overexpression of NET4 abundance decreases vacuolar occupancy. Our data reveal that NET4A induces more compact vacuoles, correlating with reduced cellular and organ growth in Arabidopsis thaliana.


2019 ◽  
Author(s):  
Sabrina Kaiser ◽  
Ahmed Eisa ◽  
Jürgen Kleine-Vehn ◽  
David Scheuring

AbstractThe dimension of the plants largest organelle – the vacuole, plays a major role in defining cellular elongation rates. The morphology of the vacuole is controlled by the actin cytoskeleton but the mechanistic connection between them remains largely elusive. Recently, the NETWORKED (NET) family of membrane-associated, actin-binding proteins has been identified and represent potential candidates to impact on vacuolar morphology. Here, we show that NET4A localizes to highly constricted regions in the vacuolar membrane and contributes to the compactness of the vacuole. Using genetic interference, we found that deregulation of NET4 abundance impacts on vacuole morphogenesis and overexpression leads to more compact vacuoles. We moreover show that the NET4A-induced changes in vacuolar shape correlates with reduced cellular and organ growth in Arabidopsis thaliana. Our results demonstrate that NET4 modulates the compactness of vacuoles and reveal higher complexity in the regulation of actin-reliant vacuolar morphology.


Sign in / Sign up

Export Citation Format

Share Document