scholarly journals Predicting Attack Surface Effects on Attack Vectors in an Open Congested Network Transmission Session by Machine Learning

Author(s):  
Nahla Aljojo

<p>This paper examined the impact of a network attack on a congested transmission session. The research is motivated by the fact that the previous research community has neglected to evaluate security issues related to network congestion environments, and has instead concentrated on resolving congestion issues only. At any point in time, attackers can take advantage of the congestion problem, exploit the attack surface, and inject attack vectors. In order to circumvent this issue, a machine learning algorithm is trained to correlate attack vectors from the attack surface in a network congestion signals environment with the value of decisions over time in order to maximise expected attack vectors from the attack surface. Experimental scenario that dwell on transmission rate overwhelming transmission session, resulting in a standing queue was used. The experiment produced a dataset in which a TCP transmission through bursting transmission were capture. The data was acquired using a variety of experimental scenarios. Nave Bayes, and K-Nearest Neighbours prediction analyses demonstrate strong prediction performance. As a result, this study re-establishes the association between attack surface and vectors with network attack prediction.    </p>

2016 ◽  
Author(s):  
Bethany Signal ◽  
Brian S Gloss ◽  
Marcel E Dinger ◽  
Timothy R Mercer

ABSTRACTBackgroundThe branchpoint element is required for the first lariat-forming reaction in splicing. However due to difficulty in experimentally mapping at a genome-wide scale, current catalogues are incomplete.ResultsWe have developed a machine-learning algorithm trained with empirical human branchpoint annotations to identify branchpoint elements from primary genome sequence alone. Using this approach, we can accurately locate branchpoints elements in 85% of introns in current gene annotations. Consistent with branchpoints as basal genetic elements, we find our annotation is unbiased towards gene type and expression levels. A major fraction of introns was found to encode multiple branchpoints raising the prospect that mutational redundancy is encoded in key genes. We also confirmed all deleterious branchpoint mutations annotated in clinical variant databases, and further identified thousands of clinical and common genetic variants with similar predicted effects.ConclusionsWe propose the broad annotation of branchpoints constitutes a valuable resource for further investigations into the genetic encoding of splicing patterns, and interpreting the impact of common- and disease-causing human genetic variation on gene splicing.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Hanlin Liu ◽  
Linqiang Yang ◽  
Linchao Li

A variety of climate factors influence the precision of the long-term Global Navigation Satellite System (GNSS) monitoring data. To precisely analyze the effect of different climate factors on long-term GNSS monitoring records, this study combines the extended seven-parameter Helmert transformation and a machine learning algorithm named Extreme Gradient boosting (XGboost) to establish a hybrid model. We established a local-scale reference frame called stable Puerto Rico and Virgin Islands reference frame of 2019 (PRVI19) using ten continuously operating long-term GNSS sites located in the rigid portion of the Puerto Rico and Virgin Islands (PRVI) microplate. The stability of PRVI19 is approximately 0.4 mm/year and 0.5 mm/year in the horizontal and vertical directions, respectively. The stable reference frame PRVI19 can avoid the risk of bias due to long-term plate motions when studying localized ground deformation. Furthermore, we applied the XGBoost algorithm to the postprocessed long-term GNSS records and daily climate data to train the model. We quantitatively evaluated the importance of various daily climate factors on the GNSS time series. The results show that wind is the most influential factor with a unit-less index of 0.013. Notably, we used the model with climate and GNSS records to predict the GNSS-derived displacements. The results show that the predicted displacements have a slightly lower root mean square error compared to the fitted results using spline method (prediction: 0.22 versus fitted: 0.31). It indicates that the proposed model considering the climate records has the appropriate predict results for long-term GNSS monitoring.


Author(s):  
Mouhammd Sharari Alkasassbeh ◽  
Mohannad Zead Khairallah

Over the past decades, the Internet and information technologies have elevated security issues due to the huge use of networks. Because of this advance information and communication and sharing information, the threats of cybersecurity have been increasing daily. Intrusion Detection System (IDS) is considered one of the most critical security components which detects network security breaches in organizations. However, a lot of challenges raise while implementing dynamics and effective NIDS for unknown and unpredictable attacks. Consider the machine learning approach to developing an effective and flexible IDS. A deep neural network model is proposed to increase the effectiveness of intrusions detection system. This chapter presents an efficient mechanism for network attacks detection and attack classification using the Management Information Base (MIB) variables with machine learning techniques. During the evaluation test, the proposed model seems highly effective with deep neural network implementation with a precision of 99.6% accuracy rate.


2020 ◽  
Vol 17 (9) ◽  
pp. 4197-4201
Author(s):  
Heena Gupta ◽  
V. Asha

The prediction problem in any domain is very important to assess the prices and preferences among people. This issue varies for different kinds of data. Data may be nominal or ordinal, it may involve more categories or less. For any category to be considered by a machine learning algorithm, it needs to be encoded before any other operation can be further performed. There are various encoding schemes available like label encoding, count encoding and one hot encoding. This paper aims to understand the impact of various encoding schemes and the accuracy among the prediction problems of high cardinality categorical data. The paper also proposes an encoding scheme based on curated strings. The domain chosen for this purpose is predicting doctors’ fees in various cities having different profiles and qualification.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Liu Miao ◽  
Zhenxing Sun ◽  
Zhang Jie

The intercarrier interference (ICI) problem of cognitive radio (CR) is severe. In this paper, the machine learning algorithm is used to obtain the optimal interference subcarriers of an unlicensed user (un-LU). Masking the optimal interference subcarriers can suppress the ICI of CR. Moreover, the parallel ICI suppression algorithm is designed to improve the calculation speed and meet the practical requirement of CR. Simulation results show that the data transmission rate threshold of un-LU can be set, the data transmission quality of un-LU can be ensured, the ICI of a licensed user (LU) is suppressed, and the bit error rate (BER) performance of LU is improved by implementing the parallel suppression algorithm. The ICI problem of CR is solved well by the new machine learning algorithm. The computing performance of the algorithm is improved by designing a new parallel structure and the communication performance of CR is enhanced.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
A Rosier ◽  
E Crespin ◽  
A Lazarus ◽  
G Laurent ◽  
A Menet ◽  
...  

Abstract Background Implantable Loop Recorders (ILRs) are increasingly used and generate a high workload for timely adjudication of ECG recordings. In particular, the excessive false positive rate leads to a significant review burden. Purpose A novel machine learning algorithm was developed to reclassify ILR episodes in order to decrease by 80% the False Positive rate while maintaining 99% sensitivity. This study aims to evaluate the impact of this algorithm to reduce the number of abnormal episodes reported in Medtronic ILRs. Methods Among 20 European centers, all Medtronic ILR patients were enrolled during the 2nd semester of 2020. Using a remote monitoring platform, every ILR transmitted episode was collected and anonymised. For every ILR detected episode with a transmitted ECG, the new algorithm reclassified it applying the same labels as the ILR (asystole, brady, AT/AF, VT, artifact, normal). We measured the number of episodes identified as false positive and reclassified as normal by the algorithm, and their proportion among all episodes. Results In 370 patients, ILRs recorded 3755 episodes including 305 patient-triggered and 629 with no ECG transmitted. 2821 episodes were analyzed by the novel algorithm, which reclassified 1227 episodes as normal rhythm. These reclassified episodes accounted for 43% of analyzed episodes and 32.6% of all episodes recorded. Conclusion A novel machine learning algorithm significantly reduces the quantity of episodes flagged as abnormal and typically reviewed by healthcare professionals. FUNDunding Acknowledgement Type of funding sources: None. Figure 1. ILR episodes analysis


Author(s):  
Chitrarth Lav ◽  
Jimmy Philip ◽  
Richard D. Sandberg

Abstract The unsteady flow prediction for turbomachinery applications relies heavily on unsteady RANS (URANS). For flows that exhibit vortex shedding, such as the wall-jet/wake flows considered in this study, URANS is unable to predict the correct momentum mixing with sufficient accuracy. We suggest a novel framework to improve that prediction, whereby the deterministic scales associated with vortex shedding are resolved while the stochastic scales of pure turbulence are modelled. The framework first separates the stochastic from the deterministic length scales and then develops a bespoke turbulence closure for the stochastic scales using a data-driven machine-learning algorithm. The novelty of the method lies in the use of machine-learning to develop closures tailored to URANS calculations. For the walljet/wake flow, three different mass flow ratios (0.86, 1.07 and 1.26) have been considered and a high-fidelity dataset of the idealised geometry is utilised for the sake of model development. This study serves as an a priori analysis, where the closures obtained from the machine-learning algorithm are evaluated before their implementation in URANS. The analysis looks at the impact of using all length scales versus the stochastic scales for closure development, and the impact of the extent of the spatial domain for developing the closure. It is found that a two-layer approach, using bespoke trained models for the near wall and the jet/wake regions, produce the best results. Finally, the generalisability of the developed closures is also evaluated by applying a given closure developed using a particular mass flow ratio to the other cases.


2021 ◽  
Vol 13 (23) ◽  
pp. 4890
Author(s):  
Hannah Ferriby ◽  
Amir Pouyan Nejadhashemi ◽  
Juan Sebastian Hernandez-Suarez ◽  
Nathan Moore ◽  
Josué Kpodo ◽  
...  

Aquaculture in Bangladesh has grown dramatically in an unplanned manner in the past few decades, becoming a major contributor to the rural economy in many parts of the country. National systems for the collection of statistics have been unable to keep pace with these rapid changes, and more accurate, up to date information is needed to inform policymakers. Using Sentinel-2 top of atmosphere reflectance data within Google Earth Engine, we proposed six different strategies for improving fishpond detection as the existing techniques seem unreliable. These techniques include: (1) identification of the best time period for image collection, (2) testing the buffer size for threshold optimization, (3) determining the best combination of image reducer and water-identifying indices, (4) introduction of a convolution filter to enhance edge-detection, (5) evaluating the impact of ground truthing data on machine learning algorithm training, and (6) identifying the best machine learning classifier. Each enhancement builds on the previous one to develop a comprehensive improvement strategy called the enhanced method for fishpond detection. We compared the results of each improvement strategy to known ground truthing fishponds as the metric of success. For machine learning classifiers, we compared the precision, recall, and F1 score to determine the quality of results. Among four machine learning methods studied here, the classification and regression trees performed the best with a precision of 0.738, recall of 0.827, and F1 score of 0.780. Overall, the proposed strategies enhanced fishpond area detection in all districts within the study area.


Sign in / Sign up

Export Citation Format

Share Document