scholarly journals Mechanisms of Viral Degradation of Cellular Signal Transducer and Activator of Transcription 2

2022 ◽  
Vol 23 (1) ◽  
pp. 489
Author(s):  
Sailen Barik

Virus infection of eukaryotes triggers cellular innate immune response, a major arm of which is the type I interferon (IFN) family of cytokines. Binding of IFN to cell surface receptors triggers a signaling cascade in which the signal transducer and activator of transcription 2 (STAT2) plays a key role, ultimately leading to an antiviral state of the cell. In retaliation, many viruses counteract the immune response, often by the destruction and/or inactivation of STAT2, promoted by specific viral proteins that do not possess protease activities of their own. This review offers a summary of viral mechanisms of STAT2 subversion with emphasis on degradation. Some viruses also destroy STAT1, another major member of the STAT family, but most viruses are selective in targeting either STAT2 or STAT1. Interestingly, degradation of STAT2 by a few viruses requires the presence of both STAT proteins. Available evidence suggests a mechanism in which multiple sites and domains of STAT2 are required for engagement and degradation by a multi-subunit degradative complex, comprising viral and cellular proteins, including the ubiquitin–proteasomal system. However, the exact molecular nature of this complex and the alternative degradation mechanisms remain largely unknown, as critically presented here with prospective directions of future study.

2021 ◽  
Author(s):  
Tai L Ng ◽  
Erika J Olson ◽  
Tae Yeon Yoo ◽  
H. Sloane Weiss ◽  
Yukiye Koide ◽  
...  

Suppression of the host innate immune response is a critical aspect of viral replication. Upon infection, viruses may introduce one or more proteins that inhibit key immune pathways, such as the type I interferon pathway. However, the ability to predict and evaluate viral protein bioactivity on targeted pathways remains challenging and is typically done on a single virus/gene basis. Here, we present a medium-throughput high-content cell-based assay to reveal the immunosuppressive effects of viral proteins. To test the predictive power of our approach, we developed a library of 800 genes encoding known, predicted, and uncharacterized human viral genes. We find that previously known immune suppressors from numerous viral families such as Picornaviridae and Flaviviridae recorded positive responses. These include a number of viral proteases for which we further confirmed that innate immune suppression depends on protease activity. A class of predicted inhibitors encoded by Rhabdoviridae viruses was demonstrated to block nuclear transport, and several previously uncharacterized proteins from uncultivated viruses were shown to inhibit nuclear transport of the transcription factors NF-kB and IRF3. We propose that this pathway-based assay, together with early sequencing, gene synthesis, and viral infection studies, could partly serve as the basis for rapid in vitro characterization of novel viral proteins.


2016 ◽  
Vol 91 (2) ◽  
Author(s):  
M. T. Sánchez-Aparicio ◽  
J. Ayllón ◽  
A. Leo-Macias ◽  
T. Wolff ◽  
A. García-Sastre

ABSTRACT The retinoic acid-inducible gene 1 (RIG-I) signaling pathway is essential for the recognition of viruses and the initiation of host interferon (IFN)-mediated antiviral responses. Once activated, RIG-I interacts with polyubiquitin chains generated by TRIM25 and binds mitochondrial antiviral signaling protein (MAVS), leading to the production of type I IFN. We now show specific interactions among these key partners in the RLR pathway through the use of bimolecular fluorescence complementation (BiFC) and super-resolution microscopy. Dimers of RIG-I, TRIM25, and MAVS localize into different compartments. Upon activation, we show that TRIM25 is redistributed into cytoplasmic dots associated with stress granules, while RIG-I associates with TRIM25/stress granules and with mitochondrial MAVS. In addition, MAVS competes with TRIM25 for RIG-I binding, and this suggests that upon TRIM25-mediated activation of RIG-I, RIG-I moves away from TRIM25 to interact with MAVS at the mitochondria. For the first time, the distribution of these three proteins was analyzed at the same time in virus-infected cells. We also investigated how specific viral proteins modify some of the protein complexes in the pathway. The protease NS3/4A from hepatitis C virus redistributes the complexes RIG-I/MAVS and MAVS/MAVS but not RIG-I/TRIM25. In contrast, the influenza A virus NS1 protein interacts with RIG-I and TRIM25 in specific areas in the cell cytoplasm and inhibits the formation of TRIM25 homocomplexes but not the formation of RIG-I/TRIM25 heterocomplexes, preventing the formation of RIG-I/MAVS complexes. Thus, we have localized spatially in the cell different complexes formed between RIG-I, TRIM25, and MAVS, in the presence or absence of two viral IFN antagonistic proteins. IMPORTANCE The first line of defense against viral infections is the innate immune response. Viruses are recognized by pathogen recognition receptors, such as the RIG-I like receptor family, that activate a signaling cascade that induces IFN production. In the present study, we visualized, for the first time in cells, both in overexpression and endogenous levels, complexes formed among key proteins involved in this innate immune signaling pathway. Through different techniques we were able to analyze how these proteins are distributed and reorganized spatially within the cell in order to transmit the signal, leading to an efficient antiviral state. In addition, this work presents a new means by how, when, and where viral proteins can target these pathways and act against the host immune system in order to counteract the activation of the immune response.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 675
Author(s):  
Samira Elmanfi ◽  
Mustafa Yilmaz ◽  
Wilson W. S. Ong ◽  
Kofi S. Yeboah ◽  
Herman O. Sintim ◽  
...  

Host cells can recognize cytosolic double-stranded DNAs and endogenous second messengers as cyclic dinucleotides—including c-di-GMP, c-di-AMP, and cGAMP—of invading microbes via the critical and essential innate immune signaling adaptor molecule known as STING. This recognition activates the innate immune system and leads to the production of Type I interferons and proinflammatory cytokines. In this review, we (1) focus on the possible role of bacterial cyclic dinucleotides and the STING/TBK1/IRF3 pathway in the pathogenesis of periodontal disease and the regulation of periodontal immune response, and (2) review and discuss activators and inhibitors of the STING pathway as immune response regulators and their potential utility in the treatment of periodontitis. PubMed/Medline, Scopus, and Web of Science were searched with the terms “STING”, “TBK 1”, “IRF3”, and “cGAS”—alone, or together with “periodontitis”. Current studies produced evidence for using STING-pathway-targeting molecules as part of anticancer therapy, and as vaccine adjuvants against microbial infections; however, the role of the STING/TBK1/IRF3 pathway in periodontal disease pathogenesis is still undiscovered. Understanding the stimulation of the innate immune response by cyclic dinucleotides opens a new approach to host modulation therapies in periodontology.


2006 ◽  
Vol 203 (4) ◽  
pp. 933-940 ◽  
Author(s):  
Javier A. Carrero ◽  
Boris Calderon ◽  
Emil R. Unanue

Mice deficient in lymphocytes are more resistant than normal mice to Listeria monocytogenes infection during the early innate immune response. This paradox remains unresolved: lymphocytes are required for sterilizing immunity, but their presence during the early stage of the infection is not an asset and may even be detrimental. We found that lymphocyte-deficient mice, which showed limited apoptosis in infected organs, were resistant during the first four days of infection but became susceptible when engrafted with lymphocytes. Engraftment with lymphocytes from type I interferon receptor–deficient (IFN-αβR−/−) mice, which had reduced apoptosis, did not confer increased susceptibility to infection, even when the phagocytes were IFN-αβR+/+. The attenuation of innate immunity was due, in part, to the production of the antiinflammatory cytokine interleukin 10 by phagocytic cells after the apoptotic phase of the infection. Thus, immunodeficient mice were more resistant relative to normal mice because the latter went through a stage of lymphocyte apoptosis that was detrimental to the innate immune response. This is an example of a bacterial pathogen creating a cascade of events that leads to a permissive infective niche early during infection.


2005 ◽  
Vol 42 (8) ◽  
pp. 869-877 ◽  
Author(s):  
Peter L Smith ◽  
Giovanna Lombardi ◽  
Graham R Foster

2021 ◽  
Vol 11 ◽  
Author(s):  
Renjie Chang ◽  
Qing Chu ◽  
Weiwei Zheng ◽  
Lei Zhang ◽  
Tianjun Xu

As is known to all, the production of type I interferon (IFN) plays pivotal roles in host innate antiviral immunity, and its moderate production play a positive role in promoting the activation of host innate antiviral immune response. However, the virus will establish a persistent infection model by interfering with the production of IFN, thereby evading the organism inherent antiviral immune response. Therefore, it is of great necessity to research the underlying regulatory mechanisms of type I IFN appropriate production under viral invasion. In this study, we report that a Sp1–responsive miR-15b plays a negative role in siniperca chuatsi rhabdovirus (SCRV)-triggered antiviral response in teleost fish. We found that SCRV could dramatically upregulate miiuy croaker miR-15b expression. Enhanced miR-15b could negatively regulate SCRV-triggered antiviral genes and inflammatory cytokines production by targeting TANK-binding kinase 1 (TBK1), thereby accelerating viral replication. Importantly, we found that miR-15b feedback regulates antiviral innate immune response through NF-κB and IRF3 signaling pathways. These findings highlight that miR-15b plays a crucial role in regulating virus–host interactions, which outlines a new regulation mechanism of fish’s innate immune responses.


Author(s):  
Xiang-Na Zhao ◽  
Yue You ◽  
Guo-Lin Wang ◽  
Hui-Xia Gao ◽  
Xiao-Ming Cui ◽  
...  

SUMMARYRecent studies have characterized the single-cell immune landscape of host immune response of coronavirus disease 2019 (COVID-19), specifically focus on the severe condition. However, the immune response in mild or even asymptomatic patients remains unclear. Here, we performed longitudinal single-cell transcriptome sequencing and T cell/B cell receptor sequencing on 3 healthy donors and 10 COVID-19 patients with asymptomatic, moderate, and severe conditions. We found asymptomatic patients displayed distinct innate immune responses, including increased CD56briCD16− NK subset, which was nearly missing in severe condition and enrichment of a new Th2-like cell type/state expressing a ciliated cell marker. Unlike that in moderate condition, asymptomatic patients lacked clonal expansion of effector CD8+ T cells but had a robust effector CD4+ T cell clonal expansion, coincide with previously detected SARS-CoV-2-reactive CD4+ T cells in unexposed individuals. Moreover, NK and effector T cells in asymptomatic patients have upregulated cytokine related genes, such as IFNG and XCL2. Our data suggest early innate immune response and type I immunity may contribute to the asymptomatic phenotype in COVID-19 disease, which could in turn deepen our understanding of severe COVID-19 and guide early prediction and therapeutics.


2021 ◽  
Author(s):  
Raphaël Jami ◽  
Emilie Mérour ◽  
Julie Bernard ◽  
Annie Lamoureux ◽  
Jean K. Millet ◽  
...  

Salmonid alphavirus (SAV) is an atypical alphavirus, which has a considerable impact on salmon and trout farms. Unlike other alphaviruses such as the chikungunya virus, SAV is transmitted without an arthropod vector, and does not cause cell shut-off during infection. The mechanisms by which SAV escapes the host immune system remain unknown. By studying the role of SAV proteins on the RIG-I signaling cascade, the first line of defense of the immune system during infection, we demonstrated that non-structural protein 2 (nsP2) effectively blocks the induction of type I interferon (IFN). This inhibition, independent of the protease activity carried by nsP2, occurs downstream of IRF3 which is the transcription factor allowing the activation of the IFN promoter and its expression. The inhibitory effect of nsP2 on the RIG-I pathway depends on the localization of nsP2 in the host cell nucleus which is linked to two nuclear localization sequences (NLS) located in its C-terminal part. The C-terminal domain of nsP2 by itself is sufficient and necessary to block IFN induction. Mutation of the NLS of nsP2 is deleterious to the virus. Finally, nsP2 does not interact with IRF3, indicating that its action is possible through a targeted interaction within discrete areas of chromatin, as suggested by its punctate distribution observed in the nucleus. These results therefore demonstrate a major role for nsP2 in the control by SAV of the host cell’s innate immune response. Importance The global consumption of fish continues to rise and the future demand cannot be met by capture fisheries alone due to limited stocks of wild fish. Aquaculture is currently the world’s fastest growing food production sector with an annual growth rate of 6-8 %. Recurrent outbreaks of SAV result in significant economic losses with serious environmental consequences on wild stocks. While the clinical and pathological signs of SAV infection are fairly well known, the molecular mechanisms involved are poorly described. In the present study, we focus on the non-structural protein nsP2 and characterize a specific domain containing nuclear localization sequences that are critical for the inhibition of the host innate immune response mediated by the RIG-I pathway.


Author(s):  
Dalia Cicily Kattiparambil Dixon ◽  
Chameli Ratan ◽  
Bhagyalakshmi Nair ◽  
Sabitha Mangalath ◽  
Rachy Abraham ◽  
...  

: Innate immunity is the first line of defence elicited by the host immune system to fight against invading pathogens such as viruses and bacteria. From this elementary immune response, the more complex antigen-specific adaptive responses are recruited to provide a long-lasting memory against the pathogens. Innate immunity gets activated when the host cell utilizes a diverse set of receptors known as pattern recognition receptors (PRR) to recognize the viruses that have penetrated the host and respond with cellular processes like complement system, phagocytosis, cytokine release and inflammation and destruction of NK cells. Viral RNA or DNA or viral intermediate products are recognized by receptors like toll-like receptors(TLRs), nucleotide oligomerization domain(NOD)-like receptors (NLRs) and retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) thereby, inducing type I interferon response (IFN) and other proinflammatory cytokines in infected cells or other immune cells. But certain viruses can evade the host innate immune response to replicate efficiently, triggering the spread of the viral infection. The present review describes the similarity in the mechanism chosen by viruses from different families -HIV, SARS-CoV2 and Nipah viruses to evade the innate immune response and how efficiently they establish the infection in the host. The review also addresses the stages of developments of various vaccines against these viral diseases and the challenges encountered by the researchers during vaccine development.


2019 ◽  
Vol 75 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Caroline Langley ◽  
Octavia Goodwin ◽  
John V. Dzimianski ◽  
Courtney M. Daczkowski ◽  
Scott D. Pegan

Bats have long been observed to be the hosts and the origin of numerous human diseases. Bats, like all mammals, rely on a number of innate immune mechanisms to combat invading pathogens, including the interferon type I, II and III responses. Ubiquitin-like interferon-stimulated gene product 15 (ISG15) is a key modulator of these interferon responses. Within these pathways, ISG15 can serve to stabilize host proteins modulating innate immune responses and act as a cytokine. Post-translational modifications of viral proteins introduced by ISG15 have also been observed to directly affect the function of numerous viral proteins. Unlike ubiquitin, which is virtually identical across all animals, comparison of ISG15s across species reveals that they are relatively divergent, with sequence identity dropping to as low as ∼58% among mammals. In addition to serving as an obstacle to the zoonotic transmission of influenza, these ISG15 species–species differences have also long been shown to have an impact on the function of viral deISGylases. Recently, the structure of the first nonhuman ISG15, originating from mouse, suggested that the structures of human ISG15 may not be reflective of other species. Here, the structure of ISG15 from the bat species Myotis davidii solved to 1.37 Å resolution is reported. Comparison of this ISG15 structure with those from human and mouse not only underscores the structural impact of ISG15 species–species differences, but also highlights a conserved hydrophobic motif formed between the two domains of ISG15. Using the papain-like deISGylase from Severe acute respiratory syndrome coronavirus as a probe, the biochemical importance of this motif in ISG15–protein engagements was illuminated.


Sign in / Sign up

Export Citation Format

Share Document