scholarly journals GhGASA10–1 promotes the cell elongation in fiber development through the phytohormones IAA-induced

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Baojun Chen ◽  
Yaru Sun ◽  
Zailong Tian ◽  
Guoyong Fu ◽  
Xinxin Pei ◽  
...  

Abstract Background Cotton is an important cash crop. The fiber length has always been a hot spot, but multi-factor control of fiber quality makes it complex to understand its genetic basis. Previous reports suggested that OsGASR9 promotes germination, width, and thickness by GAs in rice, while the overexpression of AtGASA10 leads to reduced silique length, which is likely to reduce cell wall expansion. Therefore, this study aimed to explore the function of GhGASA10 in cotton fibers development. Results To explore the molecular mechanisms underlying fiber elongation regulation concerning GhGASA10–1, we revealed an evolutionary basis, gene structure, and expression. Our results emphasized the conservative nature of GASA family with its origin in lower fern plants S. moellendorffii. GhGASA10–1 was localized in the cell membrane, which may synthesize and transport secreted proteins to the cell wall. Besides, GhGASA10–1 promoted seedling germination and root extension in transgenic Arabidopsis, indicating that GhGASA10–1 promotes cell elongation. Interestingly, GhGASA10–1 was upregulated by IAA at fiber elongation stages. Conclusion We propose that GhGASA10–1 may promote fiber elongation by regulating the synthesis of cellulose induced by IAA, to lay the foundation for future research on the regulation networks of GASA10–1 in cotton fiber development.

2021 ◽  
Author(s):  
Baojun Chen ◽  
Yaru Sun ◽  
Zailong Tian ◽  
Guoyong Fu ◽  
Xinxin Pei ◽  
...  

Abstract Background: Cotton is an important cash crop. The fiber length has always been a hot spot, but multi-factor control of fiber quality makes it complex to understand its genetic basis. Previous reports suggested that OsGASR9 promotes germination, width, and thickness by GAs in rice, while the overexpression of AtGASA10 lead to a reduction in silique length, which is likely to reduce cell wall expansion. Therefore, this study aimed to explore function of GhGASA10 in cotton fibers development.Results: To explore the molecular mechanisms underlying fiber elongation regulation concerning GhGASA10-1, we revealed an evolutionary basis, gene structure, and expression. Our results emphasized the conservative nature of GASA family with its origin in lower fern plants S. moellendorffii. GhGASA10-1 was localized in the cell membrane, which may synthesize and transport secreted protein to the cell wall. Besides, GhGASA10-1 promoted seedling germination and root extension in transgenic Arabidopsis, indicating that GhGASA10-1 promotes cell elongation. Interestingly, GhGASA10-1 was upregulated by IAA at fiber elongation stages. Conclusion: We propose that GhGASA10-1 promotes fiber elongation by regulating the synthesis of cellulose induced by IAA, to lay the foundation for future research on the regulation network of GASA10-1 in cotton fiber development.


2021 ◽  
Author(s):  
Venera S. Kamburova ◽  
Ilkhom B. Salakhutdinov ◽  
Shukhrat E. Shermatov ◽  
Zabardast T. Buriev ◽  
Ibrokhim Y. Abdurakhmonov

Cotton is one of the most important crops in the world. The Gossypium genus is represented by 50 species, divided into two levels of ploidy: diploid (2n = 26) and tetraploid (2n = 52). This diversity of Gossypium species provides an ideal model for studying the evolution and domestication of polyploids. In this regard, studies of the origin and evolution of polyploid cotton species are crucial for understanding the ways and mechanisms of gene and genome evolution. In addition, studies of polyploidization of the cotton genome will allow to more accurately determine the localization of QTLs that determine fiber quality. In addition, due to the fact that cotton fibers are single trichomes originating from epidermal cells, they are one of the most favorable model systems for studying the molecular mechanisms of regulation of cell and cell wall elongation, as well as cellulose biosynthesis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guiming Deng ◽  
Fangcheng Bi ◽  
Jing Liu ◽  
Weidi He ◽  
Chunyu Li ◽  
...  

AbstractBackgroundBanana plant height is an important trait for horticultural practices and semi-dwarf cultivars show better resistance to damages by wind and rain. However, the molecular mechanisms controlling the pseudostem height remain poorly understood. Herein, we studied the molecular changes in the pseudostem of a semi-dwarf banana mutant Aifen No. 1 (Musaspp. Pisang Awak sub-group ABB) as compared to its wild-type dwarf cultivar using a combined transcriptome and metabolome approach.ResultsA total of 127 differentially expressed genes and 48 differentially accumulated metabolites were detected between the mutant and its wild type. Metabolites belonging to amino acid and its derivatives, flavonoids, lignans, coumarins, organic acids, and phenolic acids were up-regulated in the mutant. The transcriptome analysis showed the differential regulation of genes related to the gibberellin pathway, auxin transport, cell elongation, and cell wall modification. Based on the regulation of gibberellin and associated pathway-related genes, we discussed the involvement of gibberellins in pseudostem elongation in the mutant banana. Genes and metabolites associated with cell wall were explored and their involvement in cell extension is discussed.ConclusionsThe results suggest that gibberellins and associated pathways are possibly developing the observed semi-dwarf pseudostem phenotype together with cell elongation and cell wall modification. The findings increase the understanding of the mechanisms underlying banana stem height and provide new clues for further dissection of specific gene functions.


2020 ◽  
Author(s):  
XU Shudi ◽  
Zhenyuan Pan ◽  
Feifan Yin ◽  
Qingyong Yang ◽  
Zhongxu Lin ◽  
...  

Abstract Background Meta-analysis of quantitative trait locus (QTL) is a computational technique to identify consensus QTL and refine QTL positions on the consensus map from multiple mapping studies. The combination of meta-QTL intervals, significant SNPs and transcriptome analysis has been widely used to identify candidate genes in various plants. Results In our study, 884 QTL associated with cotton fiber quality traits from 12 studies were used for meta-QTL analysis based on reference genome TM-1, as a result, 74 meta-QTL were identified, including 19 meta-QTL for fiber length (FL), 18 meta-QTL for fiber strength (FS), 11 meta-QTL for fiber uniformity (FU), 11 meta-QTL for fiber elongation (FE), and 15 meta-QTL for micronaire (MIC). Combined with 8589 significant SNPs associated with fiber quality traits collected from 15 studies, 297 candidate genes were identified in the meta-QTL intervals, 20 of which showed high expression specifically in the developing fibers. According to the function annotations, some of the 20 key candidate genes are associated with the fiber development. Conclusions This study provides not only stable QTLs used for marker-assisted selection (MAS), but also candidate genes to uncover the molecular mechanisms for cotton fiber development.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Shudi XU ◽  
Zhenyuan PAN ◽  
Feifan YIN ◽  
Qingyong YANG ◽  
Zhongxu LIN ◽  
...  

Abstract Background Meta-analysis of quantitative trait locus (QTL) is a computational technique to identify consensus QTL and refine QTL positions on the consensus map from multiple mapping studies. The combination of meta-QTL intervals, significant SNPs and transcriptome analysis has been widely used to identify candidate genes in various plants. Results In our study, 884 QTLs associated with cotton fiber quality traits from 12 studies were used for meta-QTL analysis based on reference genome TM-1, as a result, 74 meta-QTLs were identified, including 19 meta-QTLs for fiber length; 18 meta-QTLs for fiber strength; 11 meta-QTLs for fiber uniformity; 11 meta-QTLs for fiber elongation; and 15 meta-QTLs for micronaire. Combined with 8 589 significant single nucleotide polymorphisms associated with fiber quality traits collected from 15 studies, 297 candidate genes were identified in the meta-QTL intervals, 20 of which showed high expression levels specifically in the developing fibers. According to the function annotations, some of the 20 key candidate genes are associated with the fiber development. Conclusions This study provides not only stable QTLs used for marker-assisted selection, but also candidate genes to uncover the molecular mechanisms for cotton fiber development.


2020 ◽  
Author(s):  
XU Shudi ◽  
Zhenyuan Pan ◽  
Feifan Yin ◽  
Qingyong Yang ◽  
Zhongxu Lin ◽  
...  

Abstract Background: Meta-analysis of quantitative trait locus (QTL) is a computational technique to identify consensus QTL and refine QTL positions on the consensus map from multiple mapping studies. The combination of meta-QTL intervals, significant SNPs and transcriptome analysis has been widely used to identify candidate genes in various plants. Results: In our study, 884 QTLs associated with cotton fiber quality traits from 12 studies were used for meta-QTL analysis based on reference genome TM-1, as a result, 74 meta-QTLs were identified, including 19 meta-QTLs for fiber length (FL); 18 meta-QTLs for fiber strength (FS); 11 meta-QTLs for fiber uniformity (FU); 11 meta-QTLs for fiber elongation (FE); and 15 meta-QTLs for micronaire (MIC). Combined with 8,589 significant SNPs associated with fiber quality traits collected from 15 studies, 297 candidate genes were identified in the meta-QTL intervals, 20 of which showed high expression levels specifically in the developing fibers. According to the function annotations, some of the 20 key candidate genes are associated with the fiber development. Conclusions: This study provides not only stable QTLs used for marker-assisted selection (MAS), but also candidate genes to uncover the molecular mechanisms for cotton fiber development.


2020 ◽  
Author(s):  
Abdul Hafeez ◽  
Qún Gě ◽  
Qí Zhāng ◽  
Jùnwén Lǐ ◽  
Jǔwǔ Gōng ◽  
...  

Abstract Background: O-methyltransferases (OMTs) are an important group of enzymes that catalyze the transfer of a methyl group from S-adenosyl-L-methionine to their acceptor substrates. OMTs are divided into several groups according to their structural features. In Gossypium species, they are involved in phenolics and flavonoid pathways. Phenolics defend the cellulose fiber from dreadful external conditions of biotic and abiotic stresses, promoting strength and growth of plant cell wall. Results: An OMT gene family, containing a total of 192 members, has been identified and characterized in three main Gossypium species, G. hirsutum, G. arboreum and G. raimondii. Cis-regulatory elements analysis suggested important roles of OMT genes in growth, development, and defense against stresses. Transcriptome data of different fiber developmental stages in Chromosome Substitution Segment Lines (CSSLs), Recombination Inbred Lines (RILs) with excellent fiber quality, and standard genetic cotton cultivar TM-1 demonstrate that up-regulation of OMT genes at different fiber developmental stages, and abiotic stress treatments have some significant correlations with fiber quality formation, and with salt stress response. Quantitative RT-PCR results revealed that GhOMT10_Dt and GhOMT70_At genes had a specific expression in response to salt stress while GhOMT49_At, GhOMT49_Dt, and GhOMT48_At in fiber elongation and secondary cell wall stages. Conclusions: Our results indicate that O-methyltransferase genes have multi-responses to salt stress and fiber development in Gossypium species and that they may contribute to salt tolerance or fiber quality formation in Gossypium.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Hans Carolus ◽  
Siebe Pierson ◽  
José F. Mun?oz ◽  
Ana Subotić ◽  
Rita B. Cruz ◽  
...  

Candida auris is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug-resistance (MDR). Still, molecular mechanisms of MDR are largely unexplored. This is the first account of genome wide evolution of MDR in C. auris obtained through serial in vitro exposure to azoles, polyenes and echinocandins. We show the stepwise accumulation of multiple novel mutations in genes known and unknown in antifungal drug resistance, albeit almost all new for C. auris. Echinocandin resistance was accompanied by a codon deletion in FKS1hot spot 1 and a substitution in FKS1 ‘novel’ hot spot 3. Mutations in ERG3 and CIS2 further increased the echinocandin MIC. Decreased azole susceptibility was linked to a mutation in transcription factor TAC1b and overexpression of the drug efflux pump Cdr1; a segmental duplication of chromosome 1 containing ERG11; and a whole chromosome 5 duplication, which contains TAC1b. The latter was associated with increased expression of ERG11, TAC1band CDR2, but not CDR1. The simultaneous emergence of nonsense mutations in ERG3 and ERG11 was shown to decrease amphotericin B susceptibility, accompanied with fluconazole cross resistance. A mutation in MEC3, a gene mainly known for its role in DNA damage homeostasis, further increased the polyene MIC. Overall, this study shows the alarming potential and diversity for MDR development in C. auris, even in a clade until now not associated with MDR (clade II),hereby stressing its clinical importance and the urge for future research.


2015 ◽  
Vol 6 ◽  
pp. 2396-2405 ◽  
Author(s):  
Dulce G Romero-Urbina ◽  
Humberto H Lara ◽  
J Jesús Velázquez-Salazar ◽  
M Josefina Arellano-Jiménez ◽  
Eduardo Larios ◽  
...  

Silver nanoparticles offer a possible means of fighting antibacterial resistance. Most of their antibacterial properties are attributed to their silver ions. In the present work, we study the actions of positively charged silver nanoparticles against both methicillin-sensitive Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. We use aberration-corrected transmission electron microscopy to examine the bactericidal effects of silver nanoparticles and the ultrastructural changes in bacteria that are induced by silver nanoparticles. The study revealed that our 1 nm average size silver nanoparticles induced thinning and permeabilization of the cell wall, destabilization of the peptidoglycan layer, and subsequent leakage of intracellular content, causing bacterial cell lysis. We hypothesize that positively charged silver nanoparticles bind to the negatively charged polyanionic backbones of teichoic acids and the related cell wall glycopolymers of bacteria as a first target, consequently stressing the structure and permeability of the cell wall. This hypothesis provides a major mechanism to explain the antibacterial effects of silver nanoparticles on Staphylococcus aureus. Future research should focus on defining the related molecular mechanisms and their importance to the antimicrobial activity of silver nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document