scholarly journals A Genomic Comparative Analysis of Bacillus Coagulans Unravels the Genetic Potential of MA-13 Strain for Biotechnological Applications

Author(s):  
Martina Aulitto ◽  
Laura Martinez-Alvarez ◽  
Gabriella Fiorentino ◽  
Danila Limauro ◽  
Xu Peng ◽  
...  

The production of bio-chemicals requires the use of microbial strains with efficient substrate conversion and excellent environmental robustness, such as Bacillus coagulans spp. So far the genomes of about 50 strains have been sequenced. Herein, we report a comparative genomic analysis of nine strains on the full repertoire of CAZymes, secretion systems, and resistance mechanisms to environmental challenges. Moreover, B. coagulans Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) immune system along with CRISPR-associated Cas) genes, was also analysed. Overall, this study expands our understanding of the strains genomic diversity of B. coagulans to fully exploit its potential in biotechnological applications.

2021 ◽  
Author(s):  
Zhenghui Liu ◽  
Yitong Zhao ◽  
Frederick Leo Sossah ◽  
Benjamin Azu Okorley ◽  
Daniel G. Amoako ◽  
...  

Since 2016, devastating bacterial blotch affecting the fruiting bodies of Agaricus bisporus, Cordyceps militaris, Flammulina filiformis, and Pleurotus ostreatus in China has caused severe economic losses. We isolated 102 bacterial strains and characterized them polyphasically. We identified the causal agent as Pseudomonas tolaasii and confirmed the pathogenicity of the strains. A host range test further confirmed the pathogen’s ability to infect multiple hosts. This is the first report in China of bacterial blotch in C. militaris caused by P. tolaasii. Whole-genome sequences were generated for three strains: Pt11 (6.48 Mb), Pt51 (6.63 Mb), and Pt53 (6.80 Mb), and pangenome analysis was performed with 13 other publicly accessible P. tolaasii genomes to determine their genetic diversity, virulence, antibiotic resistance, and mobile genetic elements. The pangenome of P. tolaasii is open, and many more gene families are likely to emerge with further genome sequencing. Multilocus sequence analysis using the sequences of four common housekeeping genes (glns, gyrB, rpoB, and rpoD) showed high genetic variability among the P. tolaasii strains, with 115 strains clustered into a monophyletic group. The P. tolaasii strains possess various genes for secretion systems, virulence factors, carbohydrate-active enzymes, toxins, secondary metabolites, and antimicrobial resistance genes that are associated with pathogenesis and adapted to different environments. The myriad of insertion sequences, integrons, prophages, and genome islands encoded in the strains may contribute to genome plasticity, virulence, and antibiotic resistance. These findings advance understanding of the determinants of virulence, which can be targeted for the effective control of bacterial blotch disease.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2342
Author(s):  
Na Li ◽  
Yigang Zeng ◽  
Bijie Hu ◽  
Tongyu Zhu ◽  
Sine Lo Svenningsen ◽  
...  

Prophage 919TP is widely distributed among Vibrio cholera and is induced to produce free φ919TP phage particles. However, the interactions between prophage φ919TP, the induced phage particle, and its host remain unknown. In particular, phage resistance mechanisms and potential fitness trade-offs, resulting from phage resistance, are unresolved. In this study, we examined a prophage 919TP-deleted variant of V. cholerae and its interaction with a modified lytic variant of the induced prophage (φ919TP cI-). Specifically, the phage-resistant mutant was isolated by challenging a prophage-deleted variant with lytic phage φ919TP cI-. Further, the comparative genomic analysis of wild-type and φ919TP cI--resistant mutant predicted that phage φ919TP cI- selects for phage-resistant mutants harboring a mutation in key steps of lipopolysaccharide (LPS) O-antigen biosynthesis, causing a single-base-pair deletion in gene gmd. Our study showed that the gmd-mediated O-antigen defect can cause pleiotropic phenotypes, e.g., cell autoaggregation and reduced swarming motility, emphasizing the role of phage-driven diversification in V. cholerae. The developed approach assists in the identification of genetic determinants of host specificity and is used to explore the molecular mechanism underlying phage-host interactions. Our findings contribute to the understanding of prophage-facilitated horizontal gene transfer and emphasize the potential for developing new strategies to optimize the use of phages in bacterial pathogen control.


2020 ◽  
Vol 76 (1) ◽  
pp. 91-100
Author(s):  
Jorge Arca-Suárez ◽  
Cristina Lasarte-Monterrubio ◽  
Bruno-Kotska Rodiño-Janeiro ◽  
Gabriel Cabot ◽  
Juan Carlos Vázquez-Ucha ◽  
...  

Abstract Background The development of resistance to ceftolozane/tazobactam and ceftazidime/avibactam during treatment of Pseudomonas aeruginosa infections is concerning. Objectives Characterization of the mechanisms leading to the development of OXA-10-mediated resistance to ceftolozane/tazobactam and ceftazidime/avibactam during treatment of XDR P. aeruginosa infections. Methods Four paired ceftolozane/tazobactam- and ceftazidime/avibactam-susceptible/resistant isolates were evaluated. MICs were determined by broth microdilution. STs, resistance mechanisms and genetic context of β-lactamases were determined by genotypic methods, including WGS. The OXA-10 variants were cloned in PAO1 to assess their impact on resistance. Models for the OXA-10 derivatives were constructed to evaluate the structural impact of the amino acid changes. Results The same XDR ST253 P. aeruginosa clone was detected in all four cases evaluated. All initial isolates showed OprD deficiency, produced an OXA-10 enzyme and were susceptible to ceftazidime, ceftolozane/tazobactam, ceftazidime/avibactam and colistin. During treatment, the isolates developed resistance to all cephalosporins. Comparative genomic analysis revealed that the evolved resistant isolates had acquired mutations in the OXA-10 enzyme: OXA-14 (Gly157Asp), OXA-794 (Trp154Cys), OXA-795 (ΔPhe153-Trp154) and OXA-824 (Asn143Lys). PAO1 transformants producing the evolved OXA-10 derivatives showed enhanced ceftolozane/tazobactam and ceftazidime/avibactam resistance but decreased meropenem MICs in a PAO1 background. Imipenem/relebactam retained activity against all strains. Homology models revealed important changes in regions adjacent to the active site of the OXA-10 enzyme. The blaOXA-10 gene was plasmid borne and acquired due to transposition of Tn6746 in the pHUPM plasmid scaffold. Conclusions Modification of OXA-10 is a mechanism involved in the in vivo acquisition of resistance to cephalosporin/β-lactamase inhibitor combinations in P. aeruginosa.


2009 ◽  
Vol 55 (5) ◽  
pp. 587-598 ◽  
Author(s):  
Hailang Luo ◽  
Li Shen ◽  
Huaqun Yin ◽  
Qian Li ◽  
Qijiong Chen ◽  
...  

Acidithiobacillus ferrooxidans is an important microorganism used in biomining operations for metal recovery. Whole-genomic diversity analysis based on the oligonucleotide microarray was used to analyze the gene content of 12 strains of A. ferrooxidans purified from various mining areas in China. Among the 3100 open reading frames (ORFs) on the slides, 1235 ORFs were absent in at least 1 strain of bacteria and 1385 ORFs were conserved in all strains. The hybridization results showed that these strains were highly diverse from a genomic perspective. The hybridization results of 4 major functional gene categories, namely electron transport, carbon metabolism, extracellular polysaccharides, and detoxification, were analyzed. Based on the hybridization signals obtained, a phylogenetic tree was built to analyze the evolution of the 12 tested strains, which indicated that the geographic distribution was the main factor influencing the strain diversity of these strains. Based on the hybridization signals of genes associated with bioleaching, another phylogenetic tree showed an evolutionary relationship from which the co-relation between the clustering of specific genes and geochemistry could be observed. The results revealed that the main factor was geochemistry, among which the following 6 factors were the most important: pH, Mg, Cu, S, Fe, and Al.


2008 ◽  
Vol 190 (20) ◽  
pp. 6881-6893 ◽  
Author(s):  
David A. Rasko ◽  
M. J. Rosovitz ◽  
Garry S. A. Myers ◽  
Emmanuel F. Mongodin ◽  
W. Florian Fricke ◽  
...  

ABSTRACT Whole-genome sequencing has been skewed toward bacterial pathogens as a consequence of the prioritization of medical and veterinary diseases. However, it is becoming clear that in order to accurately measure genetic variation within and between pathogenic groups, multiple isolates, as well as commensal species, must be sequenced. This study examined the pangenomic content of Escherichia coli. Six distinct E. coli pathovars can be distinguished using molecular or phenotypic markers, but only two of the six pathovars have been subjected to any genome sequencing previously. Thus, this report provides a seminal description of the genomic contents and unique features of three unsequenced pathovars, enterotoxigenic E. coli, enteropathogenic E. coli, and enteroaggregative E. coli. We also determined the first genome sequence of a human commensal E. coli isolate, E. coli HS, which will undoubtedly provide a new baseline from which workers can examine the evolution of pathogenic E. coli. Comparison of 17 E. coli genomes, 8 of which are new, resulted in identification of ∼2,200 genes conserved in all isolates. We were also able to identify genes that were isolate and pathovar specific. Fewer pathovar-specific genes were identified than anticipated, suggesting that each isolate may have independently developed virulence capabilities. Pangenome calculations indicate that E. coli genomic diversity represents an open pangenome model containing a reservoir of more than 13,000 genes, many of which may be uncharacterized but important virulence factors. This comparative study of the species E. coli, while descriptive, should provide the basis for future functional work on this important group of pathogens.


2019 ◽  
Author(s):  
Liu Bin ◽  
Zhiqiu Yin ◽  
Chao Yuan ◽  
Yuhui Du ◽  
Pan Yang ◽  
...  

Abstract Background The Hafnia genus is an opportunistic pathogen that has been implicated in both nosocomial and community-acquired infections. Although Hafnia is fairly often isolated from clinical material, its taxonomy has remained an unsolved riddle, and the involvement and importance of Hafnia in human disease is also uncertain. Here, we used comparative genomic analysis to define the taxonomy of Hafnia, identify species-specific genes that may be the result of ecological and pathogenic specialization, and reveal virulence-related genetic profiles that may contribute to pathogenesis. Results One complete genome sequence and 19 draft genome sequences for Hafnia strains were generated and combined with 27 publicly available genomes. We provided high-resolution typing methods by constructing phylogeny and population structure based on single-copy core genes in combination with whole genome average nucleotide identity to identify two distant Hafnia species (alvei and paralvei) and one mislabeled strain. The open pan-genome and the presence of numerous mobile genetic elements reveal that Hafnia has undergone massive gene rearrangements. Presence of species-specific core genomes associated with metabolism and transport suggests the putative niche differentiation between alvei and paralvei. We also identified possession of diverse virulence-related profiles in both Hafnia species., including the macromolecular secretion system, virulence, and antimicrobial resistance. In the macromolecular system, T1SS, Flagellum 1, Tad pilus and T6SS-1 were conserved in Hafnia, whereas T4SS, T5SS, and other T6SSs exhibited the evolution of diversity. The virulence factors in Hafnia are related to adherence, toxin, iron uptake, stress adaptation, and efflux pump. The identified resistance genes are associated with beta-lactamases and tetracycline. These virulence-related profiles identified at the genomic level provide insights into Hafnia pathogenesis and the differentiation between alvei and paralvei. Conclusions Our research using core genome phylogeny and comparative genomics analysis of a larger collection of strains provides a comprehensive view of the taxonomy and species-specific traits between Hafnia species. Deciphering the genome of Hafnia strains possessing a reservoir of macromolecular secretion systems, virulence factors, and resistance genes related to pathogenicity may provide insights into addressing its numerous infections and devising strategies to combat the pathogen.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Jianchao Ying ◽  
Jun Ye ◽  
Teng Xu ◽  
Qian Wang ◽  
Qiyu Bao ◽  
...  

Rhodococcus equi, a member of the Rhodococcus genus, is a gram-positive pathogenic bacterium. Rhodococcus possesses an open pan-genome that constitutes the basis of its high genomic diversity and allows for adaptation to specific niche conditions and the changing host environments. Our analysis further showed that the core genome of R. equi contributes to the pathogenicity and niche adaptation of R. equi. Comparative genomic analysis revealed that the genomes of R. equi shared identical collinearity relationship, and heterogeneity was mainly acquired by means of genomic islands and prophages. Moreover, genomic islands in R. equi were always involved in virulence, resistance, or niche adaptation and possibly working with prophages to cause the majority of genome expansion. These findings provide an insight into the genomic diversity, evolution, and structural variation of R. equi and a valuable resource for functional genomic studies.


2010 ◽  
Vol 79 (2) ◽  
pp. 950-960 ◽  
Author(s):  
Jason W. Sahl ◽  
Hans Steinsland ◽  
Julia C. Redman ◽  
Samuel V. Angiuoli ◽  
James P. Nataro ◽  
...  

ABSTRACTEnterotoxigenicEscherichia coli(ETEC) is a major cause of diarrheal illness in children less than 5 years of age in low- and middle-income nations, whereas it is an emerging enteric pathogen in industrialized nations. Despite being an important cause of diarrhea, little is known about the genomic composition of ETEC. To address this, we sequenced the genomes of five ETEC isolates obtained from children in Guinea-Bissau with diarrhea. These five isolates represent distinct and globally dominant ETEC clonal groups. Comparative genomic analyses utilizing a gene-independent whole-genome alignment method demonstrated that sequenced ETEC strains share approximately 2.7 million bases of genomic sequence. Phylogenetic analysis of this “core genome” confirmed the diverse history of the ETEC pathovar and provides a finer resolution of theE. colirelationships than multilocus sequence typing. No identified genomic regions were conserved exclusively in all ETEC genomes; however, we identified more genomic content conserved among ETEC genomes than among non-ETECE. coligenomes, suggesting that ETEC isolates share a genomic core. Comparisons of known virulence and of surface-exposed and colonization factor genes across all sequenced ETEC genomes not only identified variability but also indicated that some antigens are restricted to the ETEC pathovar. Overall, the generation of these five genome sequences, in addition to the two previously generated ETEC genomes, highlights the genomic diversity of ETEC. These studies increase our understanding of ETEC evolution, as well as provide insight into virulence factors and conserved proteins, which may be targets for vaccine development.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 241
Author(s):  
Bingyong Mao ◽  
Ruimin Yin ◽  
Xiaoshu Li ◽  
Shumao Cui ◽  
Hao Zhang ◽  
...  

Lactiplantibacillus plantarum can adapt to a variety of niches and is widely distributed in many sources. We used comparative genomics to explore the differences in the genome and in the physiological characteristics of L. plantarum isolated from pickles, fermented sauce, and human feces. The relationships between genotypes and phenotypes were analyzed to address the effects of isolation source on the genetic variation of L. plantarum. The comparative genomic results indicate that the numbers of unique genes in the different strains were niche-dependent. L. plantarum isolated from fecal sources generally had more strain-specific genes than L. plantarum isolated from pickles. The phylogenetic tree and average nucleotide identity (ANI) results indicate that L. plantarum in pickles and fermented sauce clustered independently, whereas the fecal L. plantarum was distributed more uniformly in the phylogenetic tree. The pan-genome curve indicated that the L. plantarum exhibited high genomic diversity. Based on the analysis of the carbohydrate active enzyme and carbohydrate-use abilities, we found that L. plantarum strains isolated from different sources exhibited different expression of the Glycoside Hydrolases (GH) and Glycosyl Transferases (GT) families and that the expression patterns of carbohydrate active enzymes were consistent with the evolution relationships of the strains. L. plantarum strains exhibited niche-specific characteristicsand the results provided better understating on genetics of this species.


Sign in / Sign up

Export Citation Format

Share Document