whey beverages
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 11)

H-INDEX

5
(FIVE YEARS 2)

2022 ◽  
pp. 117-137
Author(s):  
Barbaros Özer ◽  
Gulsun Akdemir Evrendilek
Keyword(s):  

Author(s):  
S.H. Terde ◽  
S.R. Lande ◽  
S.S. Ramod ◽  
N.A. Suryawanshi ◽  
V.S. Dandekar

Background: Whey is the major by-product in dairy industry obtained during production of coagulated milk products like paneer, chaana, casein and cheese. Whey beverages are pure water containing sugar, flavour, edible acids and pigments and sometimes it was carbonated with carbon dioxide gas. Methods: In, present investigation kokum whey beverage was manufactured with different levels of honey and kokum syrup viz., 14 and 16 per cent level of honey and 10, 12.5 and 15 per cent level of kokum syrup incorporated with chhana whey. Result: The finished product was objected to physico-chemical analysis such as total solids, fat, protein, total sugar, ash and pH. Kokum whey beverage prepared with 14 per cent honey and 12.5 per cent kokum syrup found superior over rest of the treatments.


Author(s):  
Jahir Antonio BARAJAS-RAMÍREZ ◽  
Carolina RAMÍREZ-LÓPEZ ◽  
Victoria Guadalupe AGUILAR-RAYMUNDO

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3126
Author(s):  
Aleksandra Purkiewicz ◽  
Renata Pietrzak-Fiećko

The study assesses the antioxidant activity, total phenolic content, total flavonoids content and lipophilic pigments (β-carotene, chlorophyll a, chlorophyll b) content in homemade and marketed fruit and vegetable whey beverages and fruit and vegetable mousses. All of the tests were performed using spectrophotometric methods. The highest polyphenol content was found in the homemade green whey beverage W1G (541.95 mg/100 g) and the lowest in the market green whey beverage W2G (46.18 mg/100 g). In the fruit and vegetable mousses under study, the highest content of polyphenolic compounds was determined in the red mousse R3 (76.41 mg/100 g). The highest content of flavonoids was observed in the homemade orange whey beverage W1O (63.06 mg/100 g) and in the green mousse G2 (69.80 mg/100 g). The values of the antioxidant activity of whey beverages and mousses varied depending on the composition. The highest content of β-carotene was identified in homemade orange whey beverage (4.36 mg/100 g) and in orange mousses (in range 1.10–2.24 mg/100 g), while chlorophylls a and b—in homemade green whey beverage W1G (3.00 mg/100 g and 1.31 mg/100 g respectively) and in green mousses (chlorophyll a in range 0.54 to 1.42 mg/100 g and chlorophyll b in range 0.13 to 0.32 mg/100 g).


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 587
Author(s):  
Victoria Norton ◽  
Stella Lignou ◽  
Lisa Methven

Whey protein is fortified into beverages to provide functional benefits, however, these beverages are considered mouthdrying. To date whey protein derived mouthdrying has not been quantified using a ‘physical measure’ in parallel with rated perception. Saliva flow could also relate to whey protein derived mouthdrying, however this has not been previously tested as an intervention. Accordingly, volunteers (n = 40) tested mouthdrying in different whey beverages and the sensory profile was evaluated by a trained sensory panel (n = 10). Volunteers also rated mouthdrying combined with collection of saliva samples post beverage consumption to measure retention to the oral cavity. To modulate saliva flow rate, volunteers both chewed on parafilm (to increase saliva flow) and used cotton wool (to remove saliva) before tasting beverages and rating mouthdrying. Both the volunteers and sensory panel rated whey protein beverages (WPB) as significantly more mouthdrying than the control beverage (whey permeate). The significantly higher rating of mouthdrying from the volunteers coincided with significantly higher protein concentration in saliva samples post WPB consumption, supporting mucoadhesion as the mechanism. Modulating saliva flow did not lead to any difference in rated mouthdrying and future work would be beneficial to evaluate further the influence of natural variation in salivary flow rate.


10.5219/1324 ◽  
2020 ◽  
Vol 14 ◽  
pp. 729-734
Author(s):  
Mariana Hanková ◽  
Helena Čížková

Liquid whey is a nutritious product with high water activity and neutral pH. Therefore, it is very susceptible to microbiological spoilage that results in undesirable off-odors. Additionally, minimally processed foods are the recent trend so setting an appropriate shelf life is essential. The commonly used microbiological methods are lengthy and time-demanding, so a quick and early identification of microbial degradation would be a significant benefit. Here we tested a solid-phase microextraction, gas chromatography with mass spectrometry coupled with olfactometry analysis (SPME-GC-MS/O) on samples of sweet unpasteurized liquid whey stored at 6 °C, 12 °C and 25 °C for a week. We compared the common methods – plate methods, measurement of pH, and dry matter determination with our proposed SPME-GC-MS/O. We have identified seven sensory active compounds while octanoic acid and a compound not reliably identified by the MS detector (with main m/z observed 133 (100), 151 (65), and 135 (26)) being the most prominent. Microbiological methods proved irreplaceable for proper setting of storage conditions (with the growth of coliforms being significant (p <0.001) at 25 °C). However, SPME-GC-MS/O was able to identify volatile substances responsible for off-odors and can be used as a powerful tool to detect the cause of undesirable chemical and microbial changes in whey beverages.


Author(s):  
А.К. ГОРЕЛКИНА ◽  
И.В. ТИМОЩУК ◽  
Н.С. БАГДОНАС

Изучена стойкость нутриентов молокосырья – белков, лактозы, витаминов С и группы В, используемого в производстве сывороточных напитков в присутствии приоритетных органических контаминантов – трихлорэтилена, хлороформа и дихлорэтана, которые обладают токсическим и канцерогенным действием и образуются при хлорировании в процессе водоподготовки в воде, применяемой для производства восстановленных и рекомбинированных молочных продуктов. Содержание белков, лактозы в восстановленной сыворотке определяли методом рефрактометрии; водорастворимых витаминов – методом капиллярного электрофореза; хлороформа, трихлорэтилена и дихлорэтана – методом газожидкостной хроматографии. Установлено, что хлороформ в воде не оказывает влияния на сохранность лактозы, белков и витаминов при приготовлении восстановленной сыворотки. Отмечено снижение содержания белков сыворотки, приготовленной на воде в присутствии трихлорэтилена и дихлорэтана, на 11%, лактозы – на 32% в сравнении с контрольными образцами, произведенными на воде без органических контаминантов. Содержание витаминов в восстановленной молочной сыворотке в присутствии трихлорэтилена снизилось: С – на 19%, В1 – на 28%, В2 – на 53%, В6 – на 8%; для дихлорэтана содержание витаминов снизилось: С – на 17%, В1 – на 36%, В2 – на 38%, В6 – на 36% в сравнении с контрольными образцами без органических примесей. Теоретически обоснован механизм взаимодействия белков, лактозы, витаминов восстановленной сыворотки с трихлорэтиленом и дихлорэтаном. Предложено для предотвращения снижения качества готового продукта воду, используемую для производства сывороточных напитков, подвергать дополнительной очистке от галогенорганических контаминантов. The stability of milk raw materials’ nutrients – proteins, lactose, vitamins C and B used in the production of whey beverages in the presence of priority organic contaminants – trichloroethylene, chloroform and dichloroethane, which have a toxic and carcinogenic effect and are formed during chlorination during water treatment in water used for the production of reduced and recombined dairy products was studied. The content of proteins and lactose in the reduced serum was determined by refractometry; water-soluble vitamins – by capillary electrophoresis; chloroform, trichloroethylene and dichloroethane – by gas-liquid chromatography. It was found that chloroform in water does not affect the safety of lactose, proteins and vitamins in the preparation of reduced whey. There was a decrease in the content of serum proteins prepared in water in the presence of trichloroethylene and dichloroethane by 11%, and lactose – by 32% in comparison with control samples produced in water without organic contaminants. Vitamin C content in the recovered whey in the presence of trichloroethylene has declined by 19%, vitamin B1 – 28%, vitamin B2 – 53%, vitamin B6 – 8%; for dichloroethane content of vitamin C decreased by 17%, vitamin B1 – 36%, vitamin B2 – 38%, vitamin B6 – 36% in comparison with control samples without organic impurity. The mechanism of interaction of proteins, lactose, and reduced serum vitamins with trichloroethylene and dichloroethane is theoretically justified. Therefore, to prevent a decrease in the quality of the finished product, the water used for the production of whey beverages must first be subjected to additional purification from organohalogen contaminants.


Foods ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 13 ◽  
Author(s):  
Vasiliki Schoina ◽  
Antonia Terpou ◽  
Aikaterini Papadaki ◽  
Loulouda Bosnea ◽  
Nikolaos Kopsahelis ◽  
...  

In the present study, cheese whey was utilized for the development of a novel functional beverage, using Lactobacillus casei ATCC 393 probiotic cells immobilized on Pistacia terebinthus resin (pissa Paphos). Evaluation of shelf life of the produced beverages showed that spoilage microorganisms were not observed in beverages containing P. terebinthus resin. Terpenes’ rich content might have contributed to the antimicrobial activity of the produced beverages; however, no significant effect on the viability of the immobilized probiotic cells was obtained. Whey beverages containing the immobilized biocatalyst retained a high viability (>1 × 106 CFU/g) of probiotic cells during a storage period of 30 days at 4 °C. The superiority of whey beverages containing the immobilized biocatalyst was also highlighted by GC-MS analysis, while the enhanced aromatic profile, which was mostly attributed to the higher concentration of terpenes, was also detected during the sensory evaluation performed. Conclusively, this study indicated the high commercialization potential of these novel functional whey beverages, within the frame of a sustainable dairy waste valorization approach. To the best of our knowledge, this is the first food-oriented approach within the guidelines of the circular economy reported in the literature, using the autochthonous Pistacia terebinthus resin for the production of functional whey beverages.


Sign in / Sign up

Export Citation Format

Share Document