scholarly journals Endophytic Bacillus altitudinis Strain Uses Different Novelty Molecular Pathways to Enhance Plant Growth

2021 ◽  
Vol 12 ◽  
Author(s):  
Dening Zhang ◽  
Hongli Xu ◽  
Jingyao Gao ◽  
Roxana Portieles ◽  
Lihua Du ◽  
...  

The identification and use of endophytic bacteria capable of triggering plant growth is an important aim in sustainable agriculture. In nature, plants live in alliance with multiple plant growth-promoting endophytic microorganisms. In the current study, we isolated and identified a new endophytic bacterium from a wild plant species Glyceria chinensis (Keng). The bacterium was designated as a Bacillus altitudinis strain using 16S rDNA sequencing. The endophytic B. altitudinis had a notable influence on plant growth. The results of our assays revealed that the endophytic B. altitudinis raised the growth of different plant species. Remarkably, we found transcriptional changes in plants treated with the bacterium. Genes such as maturase K, tetratricopeptide repeat-like superfamily protein, LOB domain-containing protein, and BTB/POZ/TAZ domain-containing protein were highly expressed. In addition, we identified for the first time an induction in the endophytic bacterium of the major facilitator superfamily transporter and DNA gyrase subunit B genes during interaction with the plant. These new findings show that endophytic B. altitudinis could be used as a favourable candidate source to enhance plant growth in sustainable agriculture.

Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 476
Author(s):  
Joachim Kloehn ◽  
Matteo Lunghi ◽  
Emmanuel Varesio ◽  
David Dubois ◽  
Dominique Soldati-Favre

Apicomplexan parasites are responsible for devastating diseases, including malaria, toxoplasmosis, and cryptosporidiosis. Current treatments are limited by emerging resistance to, as well as the high cost and toxicity of existing drugs. As obligate intracellular parasites, apicomplexans rely on the uptake of many essential metabolites from their host. Toxoplasma gondii, the causative agent of toxoplasmosis, is auxotrophic for several metabolites, including sugars (e.g., myo-inositol), amino acids (e.g., tyrosine), lipidic compounds and lipid precursors (cholesterol, choline), vitamins, cofactors (thiamine) and others. To date, only few apicomplexan metabolite transporters have been characterized and assigned a substrate. Here, we set out to investigate whether untargeted metabolomics can be used to identify the substrate of an uncharacterized transporter. Based on existing genome- and proteome-wide datasets, we have identified an essential plasma membrane transporter of the major facilitator superfamily in T. gondii—previously termed TgApiAT6-1. Using an inducible system based on RNA degradation, TgApiAT6-1 was depleted, and the mutant parasite’s metabolome was compared to that of non-depleted parasites. The most significantly reduced metabolite in parasites depleted in TgApiAT6-1 was identified as the amino acid lysine, for which T. gondii is predicted to be auxotrophic. Using stable isotope-labeled amino acids, we confirmed that TgApiAT6-1 is required for efficient lysine uptake. Our findings highlight untargeted metabolomics as a powerful tool to identify the substrate of orphan transporters.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Sushant Kumar ◽  
Arunabh Athreya ◽  
Ashutosh Gulati ◽  
Rahul Mony Nair ◽  
Ithayaraja Mahendran ◽  
...  

AbstractTransporters play vital roles in acquiring antimicrobial resistance among pathogenic bacteria. In this study, we report the X-ray structure of NorC, a 14-transmembrane major facilitator superfamily member that is implicated in fluoroquinolone resistance in drug-resistant Staphylococcus aureus strains, at a resolution of 3.6 Å. The NorC structure was determined in complex with a single-domain camelid antibody that interacts at the extracellular face of the transporter and stabilizes it in an outward-open conformation. The complementarity determining regions of the antibody enter and block solvent access to the interior of the vestibule, thereby inhibiting alternating-access. NorC specifically interacts with an organic cation, tetraphenylphosphonium, although it does not demonstrate an ability to transport it. The interaction is compromised in the presence of NorC-antibody complex, consequently establishing a strategy to detect and block NorC and related transporters through the use of single-domain camelid antibodies.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 451
Author(s):  
Moritz von Cossel ◽  
Lorena Agra Pereira ◽  
Iris Lewandowski

The global demand for plant biomass to provide bioenergy and heat is continuously increasing because of a growing interest among many industrialized and developing countries towards climate sound and renewable energy supply. The exacerbation of land-use conflicts proliferates social-ecological demands on future bioenergy cropping systems. Perennial herbaceous wild plant mixtures (WPMs) represent an approach to providing social-ecologically more sustainably produced biogas substrate that has gained increasing public and political interest only in recent years. The focus of this study lies on three perennial wild plant species (WPS) that usually dominate the biomass yield performance of WPM cultivation. These WPS were compared with established biogas crops in terms of their substrate-specific methane yield (SMY) and lignocellulosic composition. The plant samples were investigated in a small-scale mesophilic discontinuous biogas batch test for determining the SMY. All WPS were found to have significantly lower SMY (241.5–248.5 lN kgVS−1) than maize (337.5 lN kgVS−1). This was attributed to higher contents of lignin (9.7–12.8% of dry matter) as well as lower contents of hemicellulose (9.9–11.5% of dry matter) in the WPS. Only minor, non-significant differences to cup plant and Virginia mallow were observed. Thus, when planning WPS as a diversification measure in biogas cropping systems, their lower SMY should be considered.


2021 ◽  
Vol 22 (15) ◽  
pp. 7877
Author(s):  
Fahimeh Shahinnia ◽  
Néstor Carrillo ◽  
Mohammad-Reza Hajirezaei

Environmental adversities, particularly drought and nutrient limitation, are among the major causes of crop losses worldwide. Due to the rapid increase of the world’s population, there is an urgent need to combine knowledge of plant science with innovative applications in agriculture to protect plant growth and thus enhance crop yield. In recent decades, engineering strategies have been successfully developed with the aim to improve growth and stress tolerance in plants. Most strategies applied so far have relied on transgenic approaches and/or chemical treatments. However, to cope with rapid climate change and the need to secure sustainable agriculture and biomass production, innovative approaches need to be developed to effectively meet these challenges and demands. In this review, we summarize recent and advanced strategies that involve the use of plant-related cyanobacterial proteins, macro- and micronutrient management, nutrient-coated nanoparticles, and phytopathogenic organisms, all of which offer promise as protective resources to shield plants from climate challenges and to boost stress tolerance in crops.


Horticulturae ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 177
Author(s):  
Aurelia Scarano ◽  
Teodoro Semeraro ◽  
Marcello Chieppa ◽  
Angelo Santino

Neglected and underutilized species (NUS) are cultivated, semi-domesticated, or wild plant species, not included in the group of the major staple crops, since, in most cases, they do not meet the global market requirements. As they often represent resilient species and valuable sources of vitamins, micronutrients, and other phytochemicals, a wider use of NUS would enhance sustainability of agro-systems and a choice of nutritious foods with a strategic role for addressing the nutritional security challenge across Europe. In this review, we focused on some examples of NUS from the Apulia Region (Southern Italy), either cultivated or spontaneously growing species, showing interesting adaptative, nutritional, and economical potential that can be exploited and properly enhanced in future programs.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 335
Author(s):  
Daniel Lizzi ◽  
Alessandro Mattiello ◽  
Alessio Adamiano ◽  
Guido Fellet ◽  
Emanuele Gava ◽  
...  

Most current studies on the relationships between plans and engineered nanomaterials (ENMs) are focused on food crops, while the effects on spontaneous plants have been neglected so far. However, from an ecological perspective, the ENMs impacts on the wild plants could have dire consequences on food webs and ecosystem services. Therefore, they should not be considered less critical. A pot trial was carried out in greenhouse conditions to evaluate the growth of Holcus lanatus L. (monocot) and Diplotaxis tenuifolia L. DC. (dicot) exposed to cerium oxide nanoparticles (nCeO2). Plants were grown for their entire cycle in a substrate amended with 200 mg kg−1nCeO2 having the size of 25 nm and 50 nm, respectively. nCeO2 were taken up by plant roots and then translocated towards leaf tissues of both species. However, the mean size of nCeO2 found in the roots of the species was different. In D. tenuifolia, there was evidence of more significant particle aggregation compared to H. lanatus. Further, biomass variables (dry weight of plant fractions and leaf area) showed that plant species responded differently to the treatments. In the experimental conditions, there were recorded stimulating effects on plant growth. However, nutritional imbalances for macro and micronutrients were observed, as well.


Sign in / Sign up

Export Citation Format

Share Document