scholarly journals Comparative study of experimental and CFD analysis for predicting discharge coefficient of compound broad crested weir

Author(s):  
Ketaki H. Kulkarni ◽  
Ganesh A. Hinge

Abstract Present study highlights the behavior of weir crest head and width parameter on the discharge coefficient of compound broad crested (CBC) weir. Computational fluid dynamics model (CFD) is validated with laboratory experimental investigations. In the discharge analysis through broad crested weirs, the upstream head over the weir crest (h) is crucial, where the result is mainly dependent upon the weir crest length (L) in transverse direction to flow, water depth from channel bed. Currently, minimal investigations are known for CFD validations on compound broad crested weirs. The hydraulic research for measuring discharge numerically is carried out using FLOW 3D software. The model applies renormalized group (RNG) using volume of fluid (VOF) method for improved accuracy in free surface simulations. Structured hexagonal meshes of cubic elements define discretized meshing. The comparative analysis of the numerical simulations and experimental observations confirm the performance of CBC weir for precise measurement of a wide range of discharges. Series of CFD model studies and experimental validation have led to constant range of discharge coefficients for various head over weir crest. The correlation coefficient of discharge predictions is 0.999 with mean error of 0.28%.

Author(s):  
M. D. Agrawal ◽  
Sanjeev Bharani

Experimental investigations on discharge coefficient (Cd) of a row of plunged dilution holes of a reverse-flow gas turbine combustor were carried out using water as the working fluid. Studies were carried in a wide range of inlet Re (0.5 × 104 – 1.65 × 104) on an individual row of dilution holes (Dd = 7 mm; 1/Dd = 0.428; s/Dd = ∞ − 2) as well as in combinations with two rows of skirted cooling holes (Dc = 2 mm; 1/Dc = 0.67) and a row of plain primary holes (Dp = 3 mm; 1/Dp = 1) using a plane annulus model. The model represented narrow outer annulus, a passage between outer casing and liner of a combustor. The downstream end of the annulus was closed, as is the case in all combustors, to establish its impact on the pressure distribution and discharge coefficient of plunged dilution holes. It is observed that presence of the other liner holes (cooling and primary), when operating together, and formation of recirculation zones towards the closed end significantly diminish pressure values at the row of dilution holes and reduce its Cd to a lower range as compared to its performance when operating individually. In this case, static pressure at all the four rows of liner holes increased parabolically up to a magnitude of Re = 1.35 × 104 and decreased thereafter with further increase in the Re. The Cd of the row of dilution holes, when operating alone, remained in the range of 0.95 to 0.81 for s/Dd = 2. For a single hole Cd varied from 0.96–98, which compares well with the data present in the literature. These values reduced in the presence of first cooling holes (by ≈ 19–23%) and primary holes (by ≈ 16–18%), while with second row of cooling holes no significant change was observed. Similarly, in combination with a pair of other rows of holes also Cd values were affected, while with all the four rows of the liner holes operating together reduced the range of Cd values to ≈ 0.88–0.85 (K = 25–27).


2021 ◽  
Vol 22 (15) ◽  
pp. 7879
Author(s):  
Yingxia Gao ◽  
Yi Zheng ◽  
Léon Sanche

The complex physical and chemical reactions between the large number of low-energy (0–30 eV) electrons (LEEs) released by high energy radiation interacting with genetic material can lead to the formation of various DNA lesions such as crosslinks, single strand breaks, base modifications, and cleavage, as well as double strand breaks and other cluster damages. When crosslinks and cluster damages cannot be repaired by the cell, they can cause genetic loss of information, mutations, apoptosis, and promote genomic instability. Through the efforts of many research groups in the past two decades, the study of the interaction between LEEs and DNA under different experimental conditions has unveiled some of the main mechanisms responsible for these damages. In the present review, we focus on experimental investigations in the condensed phase that range from fundamental DNA constituents to oligonucleotides, synthetic duplex DNA, and bacterial (i.e., plasmid) DNA. These targets were irradiated either with LEEs from a monoenergetic-electron or photoelectron source, as sub-monolayer, monolayer, or multilayer films and within clusters or water solutions. Each type of experiment is briefly described, and the observed DNA damages are reported, along with the proposed mechanisms. Defining the role of LEEs within the sequence of events leading to radiobiological lesions contributes to our understanding of the action of radiation on living organisms, over a wide range of initial radiation energies. Applications of the interaction of LEEs with DNA to radiotherapy are briefly summarized.


2021 ◽  
Vol 11 (14) ◽  
pp. 6549
Author(s):  
Hui Liu ◽  
Ming Zeng ◽  
Xiang Niu ◽  
Hongyan Huang ◽  
Daren Yu

The microthruster is the crucial device of the drag-free attitude control system, essential for the space-borne gravitational wave detection mission. The cusped field thruster (also called the High Efficiency Multistage Plasma Thruster) becomes one of the candidate thrusters for the mission due to its low complexity and potential long life over a wide range of thrust. However, the prescribed minimum of thrust and thrust noise are considerable obstacles to downscaling works on cusped field thrusters. This article reviews the development of the low power cusped field thruster at the Harbin Institute of Technology since 2012, including the design of prototypes, experimental investigations and simulation studies. Progress has been made on the downscaling of cusped field thrusters, and a new concept of microwave discharge cusped field thruster has been introduced.


Author(s):  
Oluwaseun Adeyeye ◽  
Ali Aldalbahi ◽  
Jawad Raza ◽  
Zurni Omar ◽  
Mostafizur Rahaman ◽  
...  

AbstractThe processes of diffusion and reaction play essential roles in numerous system dynamics. Consequently, the solutions of reaction–diffusion equations have gained much attention because of not only their occurrence in many fields of science but also the existence of important properties and information in the solutions. However, despite the wide range of numerical methods explored for approximating solutions, the adoption of block methods is yet to be investigated. Hence, this article introduces a new two-step third–fourth-derivative block method as a numerical approach to solve the reaction–diffusion equation. In order to ensure improved accuracy, the method introduces the concept of nonlinearity in the solution of the linear model through the presence of higher derivatives. The method obtained accurate solutions for the model at varying values of the dimensionless diffusion parameter and saturation parameter. Furthermore, the solutions are also in good agreement with previous solutions by existing authors.


2014 ◽  
Vol 657 ◽  
pp. 306-310
Author(s):  
Lăcrămioara Apetrei ◽  
Vasile Rață ◽  
Ruxandra Rață ◽  
Elena Raluca Bulai

Research evolution timely tendencies, in the nonconventional technologies field, are: manufacture conditions optimization and complex equipments design. The increasing of ultrasonic machining use, in various technologies is due to the expanding need of a wide range materials and high quality manufacture standards in many activity fields. This paper present a experimental study made in order to analyze the welded zone material structure and welding quality. The effects of aluminium ultrasonic welding parameters such as relative energy, machining time, amplitude and working force were compared through traction tests values and microstructural analysis. Microhardness tests were, also, made in five different points, two in the base material and three in the welded zone, on each welded aluminium sample. The aluminum welding experiments were made at the National Research and Development Institute for Welding and Material Testing (ISIM) Timişoara. The ultrasonic welding temperature is lower than the aluminium melting temperature, that's so our experiments reveal that the aluminium ultrasonic welding process doesn't determine the appearance of moulding structure. In the joint we have only crystalline grains deformation, phase transformation and aluminium diffusion.


Author(s):  
Masahiro Ishibashi

The paper describes primary calibration of high-precision nozzles (HPNs), which have ideal geometries, at critical condition, theoretical calculation of the discharge coefficient to be verified by the primary calibration, concept of fluid dynamical standard using HPN, precise measurement of boundary layer transition in HPNs in terms of flowrate, superfine structure in the critical flowrate, discrepancy which can occur between primary calibrations and field applications of critical nozzles, and 3D flow velocity field measurements based on recovery temperature, which visualizes many interesting phenomena in axi-symmetric transonic flow as shock interactions, acceleration by edge, reflection of shocks, Fano flow and so on.


2014 ◽  
Vol 22 (1) ◽  
pp. 159-188 ◽  
Author(s):  
Mikdam Turkey ◽  
Riccardo Poli

Several previous studies have focused on modelling and analysing the collective dynamic behaviour of population-based algorithms. However, an empirical approach for identifying and characterising such a behaviour is surprisingly lacking. In this paper, we present a new model to capture this collective behaviour, and to extract and quantify features associated with it. The proposed model studies the topological distribution of an algorithm's activity from both a genotypic and a phenotypic perspective, and represents population dynamics using multiple levels of abstraction. The model can have different instantiations. Here it has been implemented using a modified version of self-organising maps. These are used to represent and track the population motion in the fitness landscape as the algorithm operates on solving a problem. Based on this model, we developed a set of features that characterise the population's collective dynamic behaviour. By analysing them and revealing their dependency on fitness distributions, we were then able to define an indicator of the exploitation behaviour of an algorithm. This is an entropy-based measure that assesses the dependency on fitness distributions of different features of population dynamics. To test the proposed measures, evolutionary algorithms with different crossover operators, selection pressure levels and population handling techniques have been examined, which lead populations to exhibit a wide range of exploitation-exploration behaviours.


2003 ◽  
Vol 125 (3) ◽  
pp. 319-324 ◽  
Author(s):  
C. B. Coetzer ◽  
J. A. Visser

This paper introduces a compact model to predict the interfin velocity and the resulting pressure drop across a longitudinal fin heat sink with tip bypass. The compact model is based on results obtained from a comprehensive study into the behavior of both laminar and turbulent flow in longitudinal fin heat sinks with tip bypass using CFD analysis. The new compact flow prediction model is critically compared to existing compact models as well as to the results obtained from the CFD simulations. The results indicate that the new compact model shows at least a 4.5% improvement in accuracy predicting the pressure drop over a wide range of heat sink geometries and Reynolds numbers simulated. The improved accuracy in velocity distribution between the fins also increases the accuracy of the calculated heat transfer coefficients applied to the heat sinks.


2007 ◽  
Vol 16 (1) ◽  
pp. 119-122 ◽  
Author(s):  
Patrick Ledda

In the natural world, the human eye is confronted with a wide range of colors and luminances. A surface lit by moonlight might have a luminance level of around 10−3 cd/m2, while surfaces lit during a sunny day could reach values larger than 105 cd/m2. A good quality CRT (cathode ray tube) or LCD (liquid crystal display) monitor is only able to achieve a maximum luminance of around 200 to 300 cd/m2 and a contrast ratio of not more than two orders of magnitude. In this context the contrast ratio or dynamic range is defined as the ratio of the highest to the lowest luminance. We call high dynamic range (HDR) images, those images (or scenes) in which the contrast ratio is larger than what a display can reproduce. In practice, any scene that contains some sort of light source and shadows is HDR. The main problem with HDR images is that they cannot be displayed, therefore although methods to create them do exist (by taking multiple photographs at different exposure times or using computer graphics 3D software for example) it is not possible to see both bright and dark areas simultaneously. (See Figure 1.) There is data that suggests that our eyes can see detail at any given adaptation level within a contrast of 10,000:1 between the brightest and darkest regions of a scene. Therefore an ideal display should be able to reproduce this range. In this review, we present two high dynamic range displays developed by Brightside Technologies (formerly Sunnybrook Technologies) which are capable, for the first time, of linearly displaying high contrast images. These displays are of great use for both researchers in the vision/graphics/VR/medical fields as well as professionals in the VFX/gaming/architectural industry.


2019 ◽  
Author(s):  
Prashun Gorai ◽  
Robert McKinney ◽  
Nancy Haegel ◽  
Andriy Zakutayev ◽  
Vladan Stevanovic

Power electronics (PE) are used to control and convert electrical energy in a wide range of applications from consumer products to large-scale industrial equipment. While Si-based power devices account for the vast majority of the market, wide band gap semiconductors such as SiC, GaN, and Ga2O3 are starting to gain ground. However, these emerging materials face challenges due to either non-negligible defect densities, or high synthesis and processing costs, or poor thermal properties. Here, we report on a broad computational survey aimed to identify promising materials for future power electronic devices beyond SiC, GaN, and Ga2O3. We consider 863 oxides, sulfides, nitrides, carbides, silicides, and borides that are reported in the crystallographic database and exhibit finite calculated band gaps. We utilize ab initio methods in conjunction with models for intrinsic carrier mobility, and critical breakdown field to compute the widely used Baliga figure of merit. We also compute the lattice thermal conductivity as a screening parameter. In addition to correctly identifying known PE materials, our survey has revealed a number of promising candidates exhibiting the desirable combination of high figure of merit and high lattice thermal conductivity, which we propose for further experimental investigations.


Sign in / Sign up

Export Citation Format

Share Document