scholarly journals Analysis of Supercritical CO2 Cycle Using Zigzag Channel Pre-Cooler: A Design Optimization Study Based on Deep Neural Network

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6227
Author(s):  
Muhammed Saeed ◽  
Abdallah S. Berrouk ◽  
Munendra Pal Singh ◽  
Khaled Alawadhi ◽  
Muhammad Salman Siddiqui

The role of a pre-cooler is critical to the sCO2-BC as it not only acts as a sink but also controls the conditions at the main compressor’s inlet that are vital to the cycle’s overall performance. Despite their prime importance, studies on the pre-cooler’s design are hard to find in the literature. This is partly due to the unavailability of data around the complex thermohydraulic characteristics linked with their operation close to the critical point. Henceforth, the current work deals with designing and optimizing pre-cooler by utilizing machine learning (ML), an in-house recuperator and pre-cooler design, an analysis code (RPDAC), and a cycle design point code (CDPC). Initially, data computed using 3D Reynolds averaged Navier-Stokes (RANS) equation is used to train the machine learning (ML) model based on the deep neural network (DNN) to predict Nusselt number (Nu) and friction factor (f). The trained ML model is then used in the pre-cooler design and optimization code (RPDAC) to generate various designs of the pre-cooler. Later, RPDAC was linked with the cycle design point code (CDPC) to understand the impact of various designs of the pre-cooler on the cycle’s performance. Finally, a multi-objective genetic algorithm was used to optimize the pre-cooler geometry in the environment of the power cycle. Results suggest that the trained ML model can approximate 99% of the data with 90% certainty in the pre-cooler’s operating regime. Cycle simulation results suggest that the cycle’s performance calculation can be misleading without considering the pre-cooler’s pumping power. Moreover, the optimization study indicates that the compressor’s inlet temperature ranging from 307.5 to 308.5 and pre-cooler channel’s Reynolds number ranging from 28,000 to 30,000 would be a good compromise between the cycle’s efficiency and the pre-cooler’s size.

2017 ◽  
Vol 7 (1.1) ◽  
pp. 449
Author(s):  
N Ravikumar ◽  
Dr P. Tamil Selvan

Text categorization with machine learning algorithms generally reckons to possess horizontal set of classes. Several advanced machine learning algorithms have been designed in the past few decades. With the growing research work for text categorization, it has become important to categorize the research outcome and provide the learners with an effective machine learning method, a framework called, Hierarchical Decision Tree and Deep Neural Network (HDT-DNN).It investigates machine learning algorithms to create horizontal set of classes and it is used for classification of text. With this objective, a novel and efficient text categorization framework based on decision tree model is used in order to categorize text according to superior and subordinate level. The text to be categorized is presented in the form of a tree with parent text category being superior to all. The intermediate level represents the text that is both superior and subordinate. Then Deep Neural Network model is presented initiating compositional model, where the text has to be categorized, as a layered integration of primitives from the constructed decision tree model. The extra layers enable composition of features from lower layers, potentially modeling complex text with fewer units than a similarly carried out shallow network producing hierarchical classification. The significance of the impact of HDT-DNN framework is evaluated through empirical study. Extensive experiments are carried out and the performance of HDT-DNN framework is evaluated and compared with existing state-of-art methods using parameters such as precision, classification accuracy, classification time, with respect to varied number of features and document size.


2021 ◽  
Vol 170 ◽  
pp. 120903
Author(s):  
Prajwal Eachempati ◽  
Praveen Ranjan Srivastava ◽  
Ajay Kumar ◽  
Kim Hua Tan ◽  
Shivam Gupta

2020 ◽  
Vol 8 (10) ◽  
pp. 766
Author(s):  
Dohan Oh ◽  
Julia Race ◽  
Selda Oterkus ◽  
Bonguk Koo

Mechanical damage is recognized as a problem that reduces the performance of oil and gas pipelines and has been the subject of continuous research. The artificial neural network in the spotlight recently is expected to be another solution to solve the problems relating to the pipelines. The deep neural network, which is on the basis of artificial neural network algorithm and is a method amongst various machine learning methods, is applied in this study. The applicability of machine learning techniques such as deep neural network for the prediction of burst pressure has been investigated for dented API 5L X-grade pipelines. To this end, supervised learning is employed, and the deep neural network model has four layers with three hidden layers, and the neural network uses the fully connected layer. The burst pressure computed by deep neural network model has been compared with the results of finite element analysis based parametric study, and the burst pressure calculated by the experimental results. According to the comparison results, it showed good agreement. Therefore, it is concluded that deep neural networks can be another solution for predicting the burst pressure of API 5L X-grade dented pipelines.


2019 ◽  
Vol 10 (36) ◽  
pp. 8374-8383 ◽  
Author(s):  
Mohammad Atif Faiz Afzal ◽  
Aditya Sonpal ◽  
Mojtaba Haghighatlari ◽  
Andrew J. Schultz ◽  
Johannes Hachmann

Computational pipeline for the accelerated discovery of organic materials with high refractive index via high-throughput screening and machine learning.


2019 ◽  
Vol 13 ◽  
pp. 302-309
Author(s):  
Jakub Basiakowski

The following paper presents the results of research on the impact of machine learning in the construction of a voice-controlled interface. Two different models were used for the analysys: a feedforward neural network containing one hidden layer and a more complicated convolutional neural network. What is more, a comparison of the applied models was presented. This comparison was performed in terms of quality and the course of training.


2020 ◽  
Author(s):  
Muhammad Afzal ◽  
Fakhare Alam ◽  
Khalid Mahmood Malik ◽  
Ghaus M Malik

BACKGROUND Automatic text summarization (ATS) enables users to retrieve meaningful evidence from big data of biomedical repositories to make complex clinical decisions. Deep neural and recurrent networks outperform traditional machine-learning techniques in areas of natural language processing and computer vision; however, they are yet to be explored in the ATS domain, particularly for medical text summarization. OBJECTIVE Traditional approaches in ATS for biomedical text suffer from fundamental issues such as an inability to capture clinical context, quality of evidence, and purpose-driven selection of passages for the summary. We aimed to circumvent these limitations through achieving precise, succinct, and coherent information extraction from credible published biomedical resources, and to construct a simplified summary containing the most informative content that can offer a review particular to clinical needs. METHODS In our proposed approach, we introduce a novel framework, termed Biomed-Summarizer, that provides quality-aware Patient/Problem, Intervention, Comparison, and Outcome (PICO)-based intelligent and context-enabled summarization of biomedical text. Biomed-Summarizer integrates the prognosis quality recognition model with a clinical context–aware model to locate text sequences in the body of a biomedical article for use in the final summary. First, we developed a deep neural network binary classifier for quality recognition to acquire scientifically sound studies and filter out others. Second, we developed a bidirectional long-short term memory recurrent neural network as a clinical context–aware classifier, which was trained on semantically enriched features generated using a word-embedding tokenizer for identification of meaningful sentences representing PICO text sequences. Third, we calculated the similarity between query and PICO text sequences using Jaccard similarity with semantic enrichments, where the semantic enrichments are obtained using medical ontologies. Last, we generated a representative summary from the high-scoring PICO sequences aggregated by study type, publication credibility, and freshness score. RESULTS Evaluation of the prognosis quality recognition model using a large dataset of biomedical literature related to intracranial aneurysm showed an accuracy of 95.41% (2562/2686) in terms of recognizing quality articles. The clinical context–aware multiclass classifier outperformed the traditional machine-learning algorithms, including support vector machine, gradient boosted tree, linear regression, K-nearest neighbor, and naïve Bayes, by achieving 93% (16127/17341) accuracy for classifying five categories: aim, population, intervention, results, and outcome. The semantic similarity algorithm achieved a significant Pearson correlation coefficient of 0.61 (0-1 scale) on a well-known BIOSSES dataset (with 100 pair sentences) after semantic enrichment, representing an improvement of 8.9% over baseline Jaccard similarity. Finally, we found a highly positive correlation among the evaluations performed by three domain experts concerning different metrics, suggesting that the automated summarization is satisfactory. CONCLUSIONS By employing the proposed method Biomed-Summarizer, high accuracy in ATS was achieved, enabling seamless curation of research evidence from the biomedical literature to use for clinical decision-making.


2021 ◽  
Author(s):  
Marco Luca Sbodio ◽  
Natasha Mulligan ◽  
Stefanie Speichert ◽  
Vanessa Lopez ◽  
Joao Bettencourt-Silva

There is a growing trend in building deep learning patient representations from health records to obtain a comprehensive view of a patient’s data for machine learning tasks. This paper proposes a reproducible approach to generate patient pathways from health records and to transform them into a machine-processable image-like structure useful for deep learning tasks. Based on this approach, we generated over a million pathways from FAIR synthetic health records and used them to train a convolutional neural network. Our initial experiments show the accuracy of the CNN on a prediction task is comparable or better than other autoencoders trained on the same data, while requiring significantly less computational resources for training. We also assess the impact of the size of the training dataset on autoencoders performances. The source code for generating pathways from health records is provided as open source.


2018 ◽  
Author(s):  
Jingxiang Shen ◽  
Mariela D. Petkova ◽  
Yuhai Tu ◽  
Feng Liu ◽  
Chao Tang

AbstractComplex biological functions are carried out by the interaction of genes and proteins. Uncovering the gene regulation network behind a function is one of the central themes in biology. Typically, it involves extensive experiments of genetics, biochemistry and molecular biology. In this paper, we show that much of the inference task can be accomplished by a deep neural network (DNN), a form of machine learning or artificial intelligence. Specifically, the DNN learns from the dynamics of the gene expression. The learnt DNN behaves like an accurate simulator of the system, on which one can perform in-silico experiments to reveal the underlying gene network. We demonstrate the method with two examples: biochemical adaptation and the gap-gene patterning in fruit fly embryogenesis. In the first example, the DNN can successfully find the two basic network motifs for adaptation – the negative feedback and the incoherent feed-forward. In the second and much more complex example, the DNN can accurately predict behaviors of essentially all the mutants. Furthermore, the regulation network it uncovers is strikingly similar to the one inferred from experiments. In doing so, we develop methods for deciphering the gene regulation network hidden in the DNN “black box”. Our interpretable DNN approach should have broad applications in genotype-phenotype mapping.SignificanceComplex biological functions are carried out by gene regulation networks. The mapping between gene network and function is a central theme in biology. The task usually involves extensive experiments with perturbations to the system (e.g. gene deletion). Here, we demonstrate that machine learning, or deep neural network (DNN), can help reveal the underlying gene regulation for a given function or phenotype with minimal perturbation data. Specifically, after training with wild-type gene expression dynamics data and a few mutant snapshots, the DNN learns to behave like an accurate simulator for the genetic system, which can be used to predict other mutants’ behaviors. Furthermore, our DNN approach is biochemically interpretable, which helps uncover possible gene regulatory mechanisms underlying the observed phenotypic behaviors.


2021 ◽  
Author(s):  
Mohammed Ayub ◽  
SanLinn Kaka

Abstract Manual first-break picking from a large volume of seismic data is extremely tedious and costly. Deployment of machine learning models makes the process fast and cost effective. However, these machine learning models require high representative and effective features for accurate automatic picking. Therefore, First- Break (FB) picking classification model that uses effective minimum number of features and promises performance efficiency is proposed. The variants of Recurrent Neural Networks (RNNs) such as Long ShortTerm Memory (LSTM) and Gated Recurrent Unit (GRU) can retain contextual information from long previous time steps. We deploy this advantage for FB picking as seismic traces are amplitude values of vibration along the time-axis. We use behavioral fluctuation of amplitude as input features for LSTM and GRU. The models are trained on noisy data and tested for generalization on original traces not seen during the training and validation process. In order to analyze the real-time suitability, the performance is benchmarked using accuracy, F1-measure and three other established metrics. We have trained two RNN models and two deep Neural Network models for FB classification using only amplitude values as features. Both LSTM and GRU have the accuracy and F1-measure with a score of 94.20%. With the same features, Convolutional Neural Network (CNN) has an accuracy of 93.58% and F1-score of 93.63%. Again, Deep Neural Network (DNN) model has scores of 92.83% and 92.59% as accuracy and F1-measure, respectively. From the pexperiment results, we see significant superior performance of LSTM and GRU to CNN and DNN when used the same features. For robustness of LSTM and GRU models, the performance is compared with DNN model that is trained using nine features derived from seismic traces and observed that the performance superiority of RNN models. Therefore, it is safe to conclude that RNN models (LSTM and GRU) are capable of classifying the FB events efficiently even by using a minimum number of features that are not computationally expensive. The novelty of our work is the capability of automatic FB classification with the RNN models that incorporate contextual behavioral information without the need for sophisticated feature extraction or engineering techniques that in turn can help in reducing the cost and fostering classification model robust and faster.


Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 93
Author(s):  
Xiangsheng Lei ◽  
Jinwu Ouyang ◽  
Yanfeng Wang ◽  
Xinghua Wang ◽  
Xiaofeng Zhang ◽  
...  

The panel performance of a prefabricated cabin-type substation under the impact of fires plays a vital role in the normal operation of the substation. However, current evaluations of the panel performance of substations under fire still focus on fire resistance tests, which seldom consider the relationship between fire behavior and the mechanical load of the panel under the impact of fires. Aiming at the complex and uncertain relationship between the thermal and mechanical performance of the substation panel under impact of fires, this paper proposes a machine learning method based on a BP neural network. First, the fire resistance test and the stress test of the panel is carried out, then a machine learning model is established based on the BP neural network. According to the collected data, the model parameters are obtained through a series of training and verification processes. Meanwhile, the correlation between the panel performance and fire resistance was obtained. Finally, related parameters are input into the thermal–mechanical coupling evaluation model for the substation panel performance to evaluate the fire resistance performance of the substation panel. To verify the correctness of the established model, numerical simulation of the fire test and stress test of the panel is conducted, and numerical simulation samples are predicted by the trained model. The results show that the prediction curve of neural network is closer to the real results compared with the numerical simulation, and the established model can accurately evaluate the thermal–mechanical coupling performance of the substation panel under fire.


Sign in / Sign up

Export Citation Format

Share Document