scholarly journals Effects on Soil P Content, P Sorption and Risk of Eutrophication of Waterbodies of Outdoor Pig Production Areas

Author(s):  
Carmo Horta ◽  
Natália Roque

The Mediterranean region offers good weather conditions for outdoor pig production (OPP), which is considered more environmentally friendly than intensive indoor production. However, the continuous input of food and pigs' excreta increases the soil organic matter (SOM) and phosphorus (P), increasing the risk of waterbodies eutrophication. This work aimed at evaluating in OPP areas soil P dynamics and the role of SOM on P sorption and P release. The experiment was done for two years, at an area of 2.8 ha with an animal charge of 9 adults ha-1. Georeferenced soil samples were taken at 0.20 m depth, and a soil P sorption experiment was carried out. At the end of the experiment, for the background value, the levels of SOM increased between 85–376%, and Olsen P values ranged between -82–884%. SOM levels above 2% caused a decrease in the binding energy of P sorption according to the linear model b=-15.541SOM+115.20 (p <0.01) as well as a decrease of the soil P sorption capacity Qmax=-41.272SOM+298.37 (p <0.01). To avoid the accumulation of SOM and P preventing hotspots for waterbodies eutrophication, an adequate animal charge together with soil cultivation for pig grazing can be a cost-effective practice.

2012 ◽  
Vol 518-523 ◽  
pp. 5559-5564 ◽  
Author(s):  
Ke Qiang Ding

The roles of alfalfa(Lolium multiflorum L ) on remediation of B[a]P contaminated soil,the growth of alfalfa were studied in a pot experiment. The results showed that B[a]P content in soil decreased with culture time during 75d culture period. Alfalfa promotes this decrease. 75 days pot experiment showed that the concentration of B[a]P in soil grown alfalfa was significantly lower than that without plant grown ( P < 0. 05) .Under 1 ,10 and 100mg kg-1 B[a]P treatments, B[a]P biodegradability amounted to 69.5%, 75.2% and 79.1% respectively. While that of soil without plant growth were 47.4%,60.2% and 61.8%, respectively. The activity of soil urease are increasing in soil with plant grown and were obviously higher than those plant growing in uncontaminated soil(p < 0.05), which improved soil degradation ability of soil microbial and plants. There is also inhibition of high contamination on enzyme. Alfalfa makes little contribution to the removal of soil B[a]P. Though soil itself can biodegrade B[a]P, alfalfa could improve bioremediation role of B[a]P contaminated soil. Therefore, increasing alfalfa biomass, enhancing the activity of soil enzymes, creating a good environment condition can enhance the plants ability to remediate B[a]P contaminated soil.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1449
Author(s):  
Jiaohong Li ◽  
Rongyu Li ◽  
Cheng Zhang ◽  
Zhenxiang Guo ◽  
Xiaomao Wu ◽  
...  

Powdery mildew, caused by Sphaerotheca sp., annually causes severe losses in yield and quality in Rosa roxburghii production areas of southwest China. In this study, the role of the co-application of allicin and chitosan in the resistance of R. roxburghii against powdery mildew and its effects on growth, yield and quality of R. roxburghii were investigated. The laboratory toxicity test results show that allicin exhibited a superior antifungal activity against Sphaerotheca sp. with EC50 value of 148.65 mg kg−1. In the field, the foliar application of allicin could effectively enhance chitosan against powdery mildew with control efficacy of 85.97% by spraying 5% allicin microemulsion (ME) 100–time liquid + chitosan 100–time liquid, which was significantly (p < 0.01) higher than 76.70% of allicin, 70.93% of chitosan and 60.23% of polyoxin. The co-application of allicin and chitosan effectively enhanced the photosynthetic rate and chlorophyll of R. roxburghii compared with allicin, chitosan or polyoxin alone. Moreover, allicin used together with chitosan was more effective than allicin or chitosan alone in enhancing R. roxburghii plant growth and fruit yield as well as improving R. roxburghii fruit quality. This work highlights that the co-application of allicin and chitosan can be used as a green, cost-effective and environmentally friendly alternative strategy to conventional antibiotics for controlling powdery mildew of R. roxburghii.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 716-722
Author(s):  
Sneha Dhakite ◽  
Sadhana Misar Wajpeyi

The “Coronavirus disease 19 (COVID-19)” is caused by “Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)”, a newly discovered member of the Coronaviridae family of viruses which is a highly communicable. There is no effective medical treatment till date for Coronavirus disease hence prevention is the best way to keep disease away. Rasayana proved to be highly efficacious and cost effective for the Prevention and Control of viral infections when vaccines and standard therapies are lacking. Rasayana Chikitsa is one of the eight branches of Ashtanga Ayurveda which helps to maintain healthy life style. Rasayana improves immunity and performs many vital functions of human body. Vyadhikshamatva that is immune mechanism of the body is involved in Prevention of the occurrence of a new disease and it also decreases the virulence and progression of an existing disease. In COVID-19 the Respiratory system mainly get affected which is evident from its symptoms like cold, cough and breathlessness. Here the drugs help in enhancing immune system and strengthening functions of Respiratory system can be useful. For this purpose, the Rasayana like Chyavanprasha, Agastya Haritaki, Pippali Rasayana, Guduchi, Yashtimadhu, Haridra, Ashwagandha, Tulsi are used. Rasayana working on Respiratory system are best for Prevention of Coronavirus and boosting immune system. Rasayana Chikitsa can be effective in the Prevention as well as reducing symptoms of COVID-19.


1992 ◽  
Vol 26 (7-8) ◽  
pp. 1831-1840 ◽  
Author(s):  
L. A. Roesner ◽  
E. H. Burgess

Increased concern regarding water quality impacts from combined sewer overflows (CSOs) in the U.S. and elsewhere has emphasized the role of computermodeling in analyzing CSO impacts and in planning abatement measures. These measures often involve the construction of very large and costly facilities, and computer simulation during plan development is essential to cost-effective facility sizing. An effective approach to CSO system modeling focuses on detailed hydraulic simulation of the interceptor sewers in conjunction with continuous simulation of the combined sewer system to characterize CSOs and explore storage-treatment tradeoffs in planning abatement facilities. Recent advances in microcomputer hardware and software have made possible a number of new techniques which facilitate the use of computer models in CSO abatement planning.


2020 ◽  
Vol 13 ◽  
Author(s):  
Kumari Jyoti ◽  
Punyasloka Pattnaik ◽  
Tej Singh

Background:: Synthesis of metallic nanoparticles has attracted extensive vitality in numerous research areas such as drug delivery, biomedicine, catalysis etc. where continuous efforts are being made by scientists and engineers to investigate new dimensions for both technological and industrial advancements. Amongst numerous metallic nanoparticles, silver nanoparticle (AgNPs) is a novel metal species with low toxicity, higher stability and significant chemical, physical and biological properties. Methods:: In this, various methods for the fabrication of AgNPs are summarized. Importantly, we concentrated on the role of reducing agents of different plants parts, various working conditions such as AgNO3 concentration; ratio of AgNO3/extract; incubation time; centrifugal conditions, size and shapes. Results:: This study suggested that eco-friendly and non toxic biomolecules present in the extracts (e.g. leaf, stem and root) of plants are used as reducing and capping agents for silver nanoparticles fabrication. This method of fabrication of silver nanoparticles using plants extracts is comparatively cost-effective and simple. A silver salt is simply reduced by biomolecules present in the extracts of these plants. In this review, we have emphasized the synthesis and antibacterial potential of silver nanoparticles using various plant extracts. Conclusion:: Fabrication of silver nanoparticles using plant extracts have advantage over the other physical methods, as it is safe, eco-friendly and simple to use. Plants have huge potential for the fabrication of silver nanoparticles of wide potential of applications with desired shape and size.


Author(s):  
Santiago R. Unda ◽  
Aldana M. Antoniazzi ◽  
David J. Altschul ◽  
Roberta Marongiu

<b><i>Introduction:</i></b> Peripheral and central nervous system inflammation have been linked to the classic symptoms of Parkinson’s disease (PD) and Alzheimer’s disease (AD). However, it remains unclear whether the analysis of routine systemic inflammatory markers could represent a useful prediction tool to identify clinical subtypes in patients with Parkinson’s and Alzheimer’s at higher risk of dementia-associated symptoms, such as behavioral and psychological symptoms of dementia (BPSD). <b><i>Methods:</i></b> We performed a multivariate logistic regression using the 2016 and 2017 National Inpatient Sample with International Classification of Diseases 10th edition codes to assess if pro-inflammatory white blood cells (WBCs) anomalies correlate with dementia and BPSD in patients with these disorders. <b><i>Results:</i></b> We found that leukocytosis was the most common WBC inflammatory marker identified in 3.9% of Alzheimer’s and 3.3% Parkinson’s patients. Leukocytosis was also found to be an independent risk factor for Parkinson’s dementia. Multivariate analysis of both cohorts showed that leukocytosis is significantly decreased in patients with BPSD compared to patients without BPSD. <b><i>Conclusions:</i></b> These results suggest a link between leukocytosis and the pathophysiology of cognitive dysfunction in both PD and AD. A better understanding of the role of systemic neuroinflammation on these devastating neurodegenerative disorders may facilitate the development of cost-effective blood biomarkers for patient’s early diagnosis and more accurate prognosis.


2021 ◽  
Vol 13 (9) ◽  
pp. 5074
Author(s):  
Urooj Kanwal ◽  
Muhammad Ibrahim ◽  
Farhat Abbas ◽  
Muhammad Yamin ◽  
Fariha Jabeen ◽  
...  

Phytoremediation is a cost-effective and environmentally friendly approach that can be used for the remediation of metals in polluted soil. This study used a hedge plant–calico (Alternanthera bettzickiana (Regel) G. Nicholson) to determine the role of citric acid in lead (Pb) phytoremediation by exposing it to different concentrations of Pb (0, 200, 500, and 1000 mg kg−1) as well as in a combination with citric acid concentration (0, 250, 500 µM). The analysis of variance was applied on results for significant effects of the independent variables on the dependent variables using SPSS (ver10). According to the results, maximum Pb concentration was measured in the upper parts of the plant. An increase in dry weight biomass, plant growth parameters, and photosynthetic contents was observed with the increase of Pb application (200 mg kg−1) in soil while a reduced growth was experienced at higher Pb concentration (1000 mg kg−1). The antioxidant enzymatic activities like superoxide dismutase (SOD) and peroxidase (POD) were enhanced under lower Pb concentration (200, 500 mg kg−1), whereas the reduction occurred at greater metal concentration Pb (1000 mg kg−1). There was a usual reduction in electrolyte leakage (EL) at lower Pb concentration (200, 500 mg kg−1), whereas EL increased at maximum Pb concentration (1000 mg kg−1). We concluded that this hedge plant, A. Bettzickiana, has the greater ability to remediate polluted soils aided with citric acid application.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 157
Author(s):  
Jean Trap ◽  
Patricia Mahafaka Ranoarisoa ◽  
Usman Irshad ◽  
Claude Plassard

Plants evolve complex interactions with diverse soil mutualist organisms to enhance P mobilization from the soil. These strategies are particularly important when P is poorly available. It is still unclear how the soil P source (e.g., mineral P versus recalcitrant organic P) and its mobility in the soil (high or low) affect soil mutualist biological (ectomycorrhizal fungi, bacteria and bacterial-feeding nematodes) richness—plant P acquisition relationships. Using a set of six microcosm experiments conducted in growth chamber across contrasting P situations, we tested the hypothesis that the relationship between the increasing addition of soil mutualist organisms in the rhizosphere of the plant and plant P acquisition depends on P source and mobility. The highest correlation (R2 = 0.70) between plant P acquisition with soil rhizosphere biological richness was found in a high P-sorbing soil amended with an organic P source. In the five other situations, the relationships became significant either in soil conditions, with or without mineral P addition, or when the P source was supplied as organic P in the absence of soil, although with a low correlation coefficient (0.09 < R2 < 0.15). We thus encourage the systematic and careful consideration of the form and mobility of P in the experimental trials that aim to assess the role of biological complexity on plant P nutrition.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Bentahar Attaouia ◽  
Kandouci Malika ◽  
Ghouali Samir

AbstractThis work is focused to carry out the investigation of wavelength division multiplexing (WDM) approach on free space optical (FSO) transmission systems using Erbium Ytterbium Doped Waveguide Amplifier (EYDWA) integrated as post-or pre-amplifier for extending the reach to 30 Km for the cost-effective implementation of FSO system considering weather conditions. Furthermore, the performance of proposed FSO-wavelength division multiplexing (WDM) system is also evaluated on the effect of varying the FSO range and results are reported in terms of Q factor, BER, and eye diagrams. It has been found that, under clear rain the post-amplification was performed and was able to reach transmission distance over 27 Km, whereas, the FSO distance has been limited at 19.5 Km by using pre-amplification.


2021 ◽  
pp. 084653712110210
Author(s):  
Christopher I. Fung ◽  
David L. Bigam ◽  
Clarence K. W. Wong ◽  
Casey Hurrell ◽  
Jeffery R. Bird ◽  
...  

The Canadian Association of Radiologists Incidental Findings Working Group consists of both academic subspecialty and general radiologists and is tasked with adapting and expanding upon the American College of Radiology incidental findings white papers to more closely apply to Canadian practice patterns, particularly more comprehensively dealing with the role of ultrasound and pursuing more cost-effective approaches to the workup of incidental findings without compromising patient care. Presented here are the 2021 Canadian guidelines for the management of pancreatic incidental findings. Topics covered include anatomic variants, fatty atrophy, pancreatic calcifications, ductal ectasia, and management of incidental pancreatic cysts.


Sign in / Sign up

Export Citation Format

Share Document