scholarly journals Autophagy cargo receptors are secreted via extracellular vesicles and particles in response to endolysosomal inhibition or impaired autophagosome maturation

2021 ◽  
Author(s):  
Tina A Solvik ◽  
Tan A Nguyen ◽  
Yu-Hsiu T Lin ◽  
Timothy Marsh ◽  
Eric J. Huang ◽  
...  

The endosome-lysosome (endolysosome) system plays central roles in both autophagic degradation and secretory pathways, including the exocytic release of extracellular vesicles and particles (EVPs). Although previous work has revealed important interconnections between autophagy and EVP-mediated secretion, our molecular understanding of these secretory events during endolysosome inhibition remains incomplete. Here, we delineate a secretory autophagy pathway upregulated in response to endolysosomal inhibition that mediates the EVP-associated extracellular release of autophagic cargo receptors, including p62/SQSTM1. This extracellular secretion is highly regulated and critically dependent on multiple ATGs required for the progressive steps of early autophagosome formation as well as Rab27a-dependent exocytosis. Furthermore, the disruption of autophagosome maturation, either due to genetic inhibition of the autophagosome-to-autolyosome fusion machinery or blockade via the SARS-CoV2 viral protein ORF3a, is sufficient to induce robust EVP-associated secretion of autophagy cargo receptors. Finally, we demonstrate that this ATG-dependent, EVP-mediated secretion pathway buffers against the intracellular accumulation of autophagy cargo receptors when classical autophagic degradation is impaired. Based on these results, we propose that secretory autophagy via EVPs functions as an alternate route to clear sequestered material and maintain proteostasis in response to endolysosomal dysfunction or impaired autophagosome maturation.

2020 ◽  
Vol 11 (9) ◽  
Author(s):  
Riyong Li ◽  
Zhaohui Gu ◽  
Xuan Zhang ◽  
Jiahong Yu ◽  
Jinqiu Feng ◽  
...  

Abstract Autophagy is a highly conserved lysosome-dependent degradation system in eukaryotic cells. This process removes long-lived intracellular proteins, damaged organelles, and recycles biological material to maintain cellular homeostasis. Dysfunction of autophagy triggers a wide spectrum of human diseases, including cancer and neurodegenerative diseases. In the present study, we show that RNF115, an E3 ubiquitin ligase, regulates autophagosome–lysosome fusion and autophagic degradation under both nutrient-enriched and stress conditions. Depletion of the RNF115 gene caused the accumulation of autophagosomes by impairing fusion with lysosomes, which results in an accumulation of autophagic substrates. Further investigation suggests that RNF115 interacts with STX17 and enhances its stability, which is essential for autophagosome maturation. Importantly, we provide in vitro and in vivo evidence that RNF115 inactivation inhibits the tumorigenesis and metastasis of BGC823 gastric cancer cells. We additionally show that high expression levels of RNF115 mRNA correlate with poor prognosis in gastric cancer patients. These findings indicate that RNF115 may play an evolutionarily conserved role in the autophagy pathway, and may act to maintain protein homeostasis under physiological conditions. These data demonstrate the need to further evaluate the potential therapeutic implications of RNF115 in gastric cancer.


2019 ◽  
Vol 116 (27) ◽  
pp. 13404-13413 ◽  
Author(s):  
Tian-Xia Jiang ◽  
Jiang-Bo Zou ◽  
Qian-Qian Zhu ◽  
Cui Hua Liu ◽  
Guang-Fei Wang ◽  
...  

BRUCE/Apollon is a membrane-associated inhibitor of apoptosis protein that is essential for viability and has ubiquitin-conjugating activity. On initiation of apoptosis, the ubiquitin ligase Nrdp1/RNF41 promotes proteasomal degradation of BRUCE. Here we demonstrate that BRUCE together with the proteasome activator PA28γ causes proteasomal degradation of LC3-I and thus inhibits autophagy. LC3-I on the phagophore membrane is conjugated to phosphatidylethanolamine to form LC3-II, which is required for the formation of autophagosomes and selective recruitment of substrates. SIP/CacyBP is a ubiquitination-related protein that is highly expressed in neurons and various tumors. Under normal conditions, SIP inhibits the ubiquitination and degradation of BRUCE, probably by blocking the binding of Nrdp1 to BRUCE. On DNA damage by topoisomerase inhibitors, Nrdp1 causes monoubiquitination of SIP and thus promotes apoptosis. However, on starvation, SIP together with Rab8 enhances the translocation of BRUCE into the recycling endosome, formation of autophagosomes, and degradation of BRUCE by optineurin-mediated autophagy. Accordingly, deletion of SIP in cultured cells reduces the autophagic degradation of damaged mitochondria and cytosolic protein aggregates. Thus, by stimulating proteasomal degradation of LC3-I, BRUCE also inhibits autophagy. Conversely, SIP promotes autophagy by blocking BRUCE-dependent degradation of LC3-I and by enhancing autophagosome formation and autophagic destruction of BRUCE. These actions of BRUCE and SIP represent mechanisms that link the regulation of autophagy and apoptosis under different conditions.


Cancers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 52 ◽  
Author(s):  
Flora Guerra ◽  
Aurora Paiano ◽  
Danilo Migoni ◽  
Giulia Girolimetti ◽  
Anna Myriam Perrone ◽  
...  

Background: Cisplatin (CDDP) is widely used in treatment of cancer, yet patients often develop resistance with consequent therapeutical failure. In CDDP-resistant cells alterations of endocytosis and lysosomal functionality have been revealed, although their causes and contribution to therapy response are unclear. Methods: We investigated the role of RAB7A, a key regulator of late endocytic trafficking, in CDDP-resistance by comparing resistant and sensitive cells using western blotting, confocal microscopy and real time PCR. Modulation of RAB7A expression was performed by transfection and RNA interference, while CDDP sensitivity and intracellular accumulation were evaluated by viability assays and chemical approaches, respectively. Also extracellular vesicles were purified and analyzed. Finally, correlations between RAB7A and chemotherapy response was investigated in human patient samples. Results: We demonstrated that down-regulation of RAB7A characterizes the chemoresistant phenotype, and that RAB7A depletion increases CDDP-resistance while RAB7A overexpression decreases it. In addition, increased production of extracellular vesicles is modulated by RAB7A expression levels and correlates with reduction of CDDP intracellular accumulation. Conclusions: We demonstrated, for the first time, that RAB7A regulates CDDP resistance determining alterations in late endocytic trafficking and drug efflux through extracellular vesicles.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2906-2906
Author(s):  
Jemimah Adams ◽  
R Gitendra Wickremasinghe ◽  
Archibald G Prentice ◽  
Jonathan C. Strefford ◽  
Andrew Duncombe ◽  
...  

Abstract Abstract 2906 Chronic Lymphocytic leukemia (CLL) is currently incurable using conventional therapies. CLL cells can evade killing by various therapeutic strategies. However the precise mechanisms are currently unknown. Autophagy is regulated by a complex system of proteins, and is used by both normal and malignant cells as a protective mechanism against cellular stress induced by starvation, hypoxia, reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress. In malignant cells autophagy was shown to promote tumorigenesis and/or resistance to chemotherapy. Therefore we hypothesized that autophagy may play a role in CLL biology. Autophagy can also promote cell death when stress signals are elevated above a particular threshold for a prolonged period of time. In this study we investigated the basal expression levels of autophagy specific genes and the effect of autophagy specific inhibitors (Bafilomycin, 3-methyladenine and hydroxychloroquine) and inducers (Phenethyl isothiocyanate) on CLL survival. Phenethyl isothiocyanate (PEITC) is about to enter clinical trials for CLL (NCT00968461). We have investigated induction of components of the autophagic pathway following treatment of CLL cells in vitro with a range of chemical inhibitors. Immunoblotting was carried out to investigate components of the autophagy pathway using phosphorylation state-specific and pan-reactive antibodies. Bafilomycin (BAF), 3-methyladenine (3-MA) and hydroxychloroquine (HCQ) toxicity towards CLL samples were evaluated by Annexin V/PI staining, MTT assay and immunoblotting for cleavage of the caspase 3 substrate poly(ADP ribose) polymerase (PARP) from its 116KDa to its 85KDa form. PEITC was used at concentrations between 2.5 and 25μM to investigate its effect on signaling. Autophagy was quantitated by immunoblotting of LC3-I and LC3-II. Lipidation of LC3 from LC3-I to LC3-II is a surrogate marker of autophagy and is essential for autophagasome formation. Immunoblotting was also performed for ATG3, ATG5 and ATG7, key components of the autophagy pathway. Monodansylcadaverine (MDC) was used with immunofluorescence and FACS analysis to investigate increases in autophagasome formation. Transmission electron microscopy (TEM) was used to confirm double membrane bound autophagosomes. Co-immunoprecipitation was used to evaluate if Beclin-1 was sequestered by Bcl-2 preventing autophagy. Its release from Bcl-2 enables Beclin-1 to interact with other autophagy specific proteins and initiates autophagasome formation. LC3-I was lipidated to LC3-II (p=0.019) and ATG3 (p=0.021) was upregulated to a greater extent in CLL samples compared with normal B-cell controls at basal levels. This suggested that autophagy was active to a greater extent in CLL samples compared with normal individuals. In addition Beclin was dissociated from Bcl-2 in CLL samples indicating that autophagy was active. Autophagy appears to be a pro-survival mechanism in untreated CLL cells as inhibiting basal levels of autophagy with autophagy inhibitors BAF (50–200nM), 3-MA (5–10mM) and hydroxychlorquine (5–10μM) resulted in CLL apoptosis as shown by MTT, Annexin V/PI analysis and PARP cleavage. Interestingly augmenting autophagy was also capable of inducing apoptosis in CLL samples. Treatment with PEITC caused an increase in punctate staining using MDC which is suggestive of autophagosome formation. We went on to determine that PEITC further induced LC3-II lipidation using immunoblotting and showed a substantial increase in overall LC3 protein expression. PEITC also induced the expression of ATG3, a key protein in the autophagy pathway. We then evaluated autophagosome formation using TEM (Figure 1). Our data showed greater numbers of autophagosomes in the PEITC treated samples compared to the untreated controls. Therefore autophagy in CLL sits on a knife-edge, such that perturbations that either increase pro- death or decrease pro-survival autophagy signals can result in CLL cell death, depending on the duration and intensity of the signal. Figure 1. Transmission electron microscopy of CLL cells CLL cells were treated with 10μM PEITC. Double membrane bound organelles were found in the CLL cells after treatment which were not present in the no addition control (depicted by the arrows). These organelles are autophagsomes. Magnification (left picture) ruler is 500nM, (right picture) ruler is 100nM Figure 1. Transmission electron microscopy of CLL cells . / CLL cells were treated with 10μM PEITC. Double membrane bound organelles were found in the CLL cells after treatment which were not present in the no addition control (depicted by the arrows). These organelles are autophagsomes. Magnification (left picture) ruler is 500nM, (right picture) ruler is 100nM Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Yafei Qu ◽  
Xin Wang ◽  
Yunkai Zhu ◽  
Weili Wang ◽  
Yuyan Wang ◽  
...  

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the causative agent for the coronavirus disease 2019 (COVID-19) pandemic and there is an urgent need to understand the cellular response to SARS-CoV-2 infection. Beclin 1 is an essential scaffold autophagy protein that forms two distinct subcomplexes with modulators Atg14 and UVRAG, responsible for autophagosome formation and maturation, respectively. In the present study, we found that SARS-CoV-2 infection triggers an incomplete autophagy response, elevated autophagosome formation but impaired autophagosome maturation, and declined autophagy by genetic knockout of essential autophagic genes reduces SARS-CoV-2 replication efficiency. By screening 26 viral proteins of SARS-CoV-2, we demonstrated that expression of ORF3a alone is sufficient to induce incomplete autophagy. Mechanistically, SARS-CoV-2 ORF3a interacts with autophagy regulator UVRAG to facilitate PI3KC3-C1 (Beclin-1-Vps34-Atg14) but selectively inhibit PI3KC3-C2 (Beclin-1-Vps34-UVRAG). Interestingly, although SARS-CoV ORF3a shares 72.7% amino acid identity with the SARS-CoV-2 ORF3a, the former had no effect on cellular autophagy response. Thus, our findings provide the mechanistic evidence of possible takeover of host autophagy machinery by ORF3a to facilitate SARS-CoV-2 replication and raise the possibility of targeting the autophagic pathway for the treatment of COVID-19.


2021 ◽  
Vol 22 (21) ◽  
pp. 11749
Author(s):  
Said M. Hashimi ◽  
Nini Wu ◽  
Jie Ran ◽  
Jianzhong Liu

Autophagy plays a critical role in nutrient recycling and stress adaptations. However, the role of autophagy has not been extensively investigated in crop plants. In this study, soybean autophagy-related gene 2 (GmATG2) was silenced, using virus-induced silencing (VIGS) mediated by Bean pod mottle virus (BPMV). An accelerated senescence phenotype was exclusively observed for the GmATG2-silenced plants under dark conditions. In addition, significantly increased accumulation of both ROS and SA as well as a significantly induced expression of the pathogenesis-related gene 1 (PR1) were also observed on the leaves of the GmATG2-silenced plants, indicating an activated immune response. Consistent with this, GmATG2-silenced plants exhibited a significantly enhanced resistance to Pseudomonas syringae pv. glycinea (Psg) relative to empty vector control plants (BPMV-0). Notably, the activated immunity of the GmATG2-silenced plants was independent of the MAPK signaling pathway. The fact that the accumulation levels of ATG8 protein and poly-ubiquitinated proteins were significantly increased in the dark-treated GmATG2-silenced plants relative to the BPMV-0 plants indicated that the autophagic degradation is compromised in the GmATG2-silenced plants. Together, our results indicated that silencing GmATG2 compromises the autophagy pathway, and the autophagy pathway is conserved in different plant species.


2018 ◽  
Vol 62 (2) ◽  
pp. 215-223 ◽  
Author(s):  
Ana-Citlali Gradilla ◽  
Eléanor Simon ◽  
Gustavo Aguilar ◽  
Isabel Guerrero

Signalling from cell-to-cell is fundamental for determining differentiation and patterning. This communication can occur between adjacent and distant cells. Extracellular vesicles (EVs) are membrane-based structures thought to facilitate the long-distance movement of signalling molecules. EVs have recently been found to allow the transport of two major developmental signalling pathways: Hedgehog and Wnt. These signalling molecules undergo crucial post-translational lipid modifications, which anchor them to membranes and impede their free release into the extracellular space. Preparation of these ligands in EVs involves intracellular vesicle sorting in an endocytosis-dependent recycling process before secretion. In the present review, we discuss the most recent advances with regard to EV involvement in developmental signalling at a distance. We focus on the role of the protein complexes involved in EV genesis, and provide a comprehensive perspective of the contribution of these complexes to intracellular vesicle sorting of developmental signals for their extracellular secretion, reception and transduction.


2005 ◽  
Vol 73 (8) ◽  
pp. 4461-4470 ◽  
Author(s):  
Thomas J. Kirn ◽  
Ronald K. Taylor

ABSTRACT Vibrio cholerae causes diarrhea by colonizing the human small bowel and intoxicating epithelial cells. Colonization is a required step in pathogenesis, and strains defective for colonization are significantly attenuated. The best-characterized V. cholerae colonization factor is the toxin-coregulated pilus (TCP). It has been demonstrated that TCP is required for V. cholerae colonization in both humans and mice. TCP enhances bacterial interactions that allow microcolony formation and thereby promotes survival in the intestine. We have recently discovered that the TCP biogenesis apparatus also serves as a secretion system, mediating the terminal step in the extracellular secretion pathway of TcpF. TcpF was identified in classical isolates of V. cholerae O1 as a soluble factor essential for colonization in the infant mouse cholera model. In the present study, we expanded our analysis of TcpF to include the O1 El Tor and O139 serogroups and investigated how TCP and TcpF act together to mediate colonization. Additionally, we demonstrated that antibodies generated against TcpF are protective against experimental V. cholerae infection in the infant mouse cholera model. This observation, coupled with the fact that TcpF is a potent mediator of colonization, suggests that TcpF should be considered as a component of a polyvalent cholera vaccine formulation.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Kevin Moreau ◽  
Angeleen Fleming ◽  
Sara Imarisio ◽  
Ana Lopez Ramirez ◽  
Jacob L. Mercer ◽  
...  

Abstract Genome-wide association studies have identified several loci associated with Alzheimer’s disease (AD), including proteins involved in endocytic trafficking such as PICALM/CALM (phosphatidylinositol binding clathrin assembly protein). It is unclear how these loci may contribute to AD pathology. Here we show that CALM modulates autophagy and alters clearance of tau, a protein which is a known autophagy substrate and which is causatively linked to AD, both in vitro and in vivo. Furthermore, altered CALM expression exacerbates tau-mediated toxicity in zebrafish transgenic models. CALM influences autophagy by regulating the endocytosis of SNAREs, such as VAMP2, VAMP3 and VAMP8, which have diverse effects on different stages of the autophagy pathway, from autophagosome formation to autophagosome degradation. This study suggests that the AD genetic risk factor CALM modulates autophagy, and this may affect disease in a number of ways including modulation of tau turnover.


2000 ◽  
Vol 182 (3) ◽  
pp. 742-748 ◽  
Author(s):  
Maria Sandkvist ◽  
Jerry M. Keith ◽  
Michael Bagdasarian ◽  
S. Peter Howard

ABSTRACT Extracellular secretion of proteins via the type II or general secretion pathway in gram-negative bacteria requires the assistance of at least 12 gene products that are thought to form a complex apparatus through which secreted proteins are translocated. Although this apparatus is specifically required only for the outer membrane translocation step during transport across the bacterial cell envelope, it is believed to span both membranes. The EpsE, EpsL, and EpsM proteins of the type II apparatus in Vibrio cholerae are thought to form a trimolecular complex that is required to either control the opening and closing of the secretion pore or to transduce energy to the site of outer membrane translocation. EpsL is likely to play an important role in this relay by interacting with both the cytoplasmic EpsE protein and the cytoplasmic membrane protein EpsM, which is predominantly exposed on the periplasmic side of the membrane. We have now extended this model and mapped the separate regions within EpsL that contain the EpsE and EpsM binding domains. By taking advantage of the species specificity of the type II pathway, we have used chimeric proteins composed of EpsL and its homologue, ExeL, fromAeromonas hydrophila together with either EpsE or itsAeromonas homologue, ExeE, to complement the secretion defect in both epsL and exeL mutant strains. These studies have mapped the species-specific EpsE binding site to the N-terminal cytoplasmic region between residues 57 and 216 of EpsL. In addition, the species-specific EpsM binding site was mapped to the C-terminal half of EpsL by coimmunoprecipitation of EpsM with different EpsL-ExeL chimeras. This site is present in the region between amino acids 216 and 296, which contains the predicted membrane-spanning segment of EpsL.


Sign in / Sign up

Export Citation Format

Share Document