scholarly journals Electrical Stimulation and Cellular Behaviors in Electric Field in Biomedical Research

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 165
Author(s):  
Shiyun Meng ◽  
Mahmoud Rouabhia ◽  
Ze Zhang

Research on the cellular response to electrical stimulation (ES) and its mechanisms focusing on potential clinic applications has been quietly intensified recently. However, the unconventional nature of this methodology has fertilized a great variety of techniques that make the interpretation and comparison of experimental outcomes complicated. This work reviews more than a hundred publications identified mostly from Medline, categorizes the techniques, and comments on their merits and weaknesses. Electrode-based ES, conductive substrate-mediated ES, and noninvasive stimulation are the three principal categories used in biomedical research and clinic. ES has been found to enhance cell proliferation, growth, migration, and stem cell differentiation, showing an important potential in manipulating cellular activities in both normal and pathological conditions. However, inappropriate parameters or setup can have negative effects. The complexity of the delivered electric signals depends on how they are generated and in what form. It is also difficult to equate one set of parameters with another. Mechanistic studies are rare and badly needed. Even so, ES in combination with advanced materials and nanotechnology is developing a strong footing in biomedical research and regenerative medicine.

2020 ◽  
Author(s):  
Karolina E. Hilse ◽  
Anne Rupprecht ◽  
Kristopher Ford ◽  
Olena Andrukhova ◽  
Reinhold Erben ◽  
...  

AbstractOne of the important hallmarks of cardiovascular disease is mitochondrial dysfunction, which results in abnormal energy metabolism and increased ROS production in cardiomyocytes. Members of the mitochondrial uncoupling protein family, UCP2 and UCP3, are thought to be beneficial by reducing ROS due to mild uncoupling. More recent hypotheses suggest the involvement of both proteins in cell metabolism by the transport of yet unknown substrates. The protein expression pattern under physiological and pathological conditions is an important clue for the evaluation of UCP2/UCP3 function, however, there is still no consensus about it. Previously, we demonstrated that only UCP3 is present in the adult murine heart under physiological conditions and correlated it with the predominant use of fatty acids for oxidation. In contrast, UCP2 was found only in very young (stem cell – like) cardiomyocytes, that rely mostly on glycolysis. Here, we employed three different models (ex vivo heart ischemia-reperfusion model, myocardial infarction model, and embryonic stem cell differentiation into cardiomyocytes under hypoxic conditions) to evaluate the abundance of both proteins under ischemia and hypoxia conditions. We found that (i) oxygen shortage or bursts did not influence UCP3 levels in the heart and ii) UCP2 was not present in healthy, ischemic, or re-perfused hearts. However, (iii) UCP2 was sensitive to the oxygen concentration in stem cells, in which UCP2 is normally expressed. These results further support the idea, that two highly homologous proteins – UCP2 and UCP3 – are abundant in different cells and tissues, and differently regulated under physiological and pathological conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Jiaqi Zhu ◽  
Zhiping Qi ◽  
Changjun Zheng ◽  
Pan Xue ◽  
Chuan Fu ◽  
...  

Bone tissue engineering scaffold provides an effective treatment for bone defect repair. Biodegradable bone scaffold made of various synthetic and natural materials can be used as bone substitutes and grafts for defect site, which has great potential to support bone regeneration. Regulation of cell-scaffold material interactions is an important factor for modulating the cellular activity in bone tissue engineering scaffold applications. Thus, the hydrophilic, mechanical, and chemical properties of scaffold materials directly affect the results of bone regeneration and functional recovery. In this study, a poly-L-lysine (PLL) surface-modified poly(lactic-co-glycolic acid) (PLGA)/graphene oxide (GO) (PLL-PLGA/GO) hybrid fiber matrix was fabricated for bone tissue regeneration. Characterization of the resultant hybrid fiber matrices was done using scanning electron microscopy (SEM), contact angle, and a material testing machine. According to the results obtained from the test above, the PLL-PLGA/GO hybrid fiber matrices exhibited high wettability and mechanical strength. The special surface characteristics of PLL-PLGA/GO hybrid fiber matrices were more beneficial for protein adsorption and inhibit the proliferation of pathogens. Moreover, the enhanced regulation of MC3T3-E1 cell proliferation and differentiation was observed, when the resultant hybrid fiber matrices were combined with electrical stimulation (ES). The cellular response of MC3T3-E1 cells including cell adhesion, proliferation, alkaline phosphatase (ALP) activity, calcium deposition, and osteogenesis-related gene expression was significantly enhanced with the synergistic effect of resultant hybrid fiber matrices and ES. These data indicate that the PLL-PLGA/GO hybrid fiber matrices supported the cellular response in terms of cell proliferation and osteogenesis differentiation in the presence of electrical stimulation, which could be a potential treatment for bone defect.


1989 ◽  
Vol 257 (3) ◽  
pp. C427-C434 ◽  
Author(s):  
Q. Li ◽  
C. M. Hohl ◽  
R. A. Altschuld ◽  
B. T. Stokes

Rapid fluctuations of intracellular free calcium in single adult rat heart myocytes were monitored by time-resolved fura-2 fluorescence microscopy. Under controlled aerobic conditions (35 degrees C, pH 7.3), electrical stimulation at 0.5 Hz produced a concave negative staircase of calcium transients. When the myocytes were challenged with 3 mM amobarbital (Amytal) and 2 microM carbonyl cyanide m-chlorophenylhydrazone (CCCP) to deplete ATP, the cells became unresponsive to electrical stimulation within 1 min but responded to 10 mM caffeine with a large increase in free calcium. After the development of rigor contracture, the cellular response to caffeine was blunted. Free calcium increased at a variable rate in individual cells, reaching values of 300-1,000 nM after 15 min. When the inhibitors were removed, calcium declined toward control values, and spontaneous contractile activity and calcium transients were invariably observed. During subsequent electrical stimulation, there was a decrease in the half-widths of the calcium transients and an attenuation of the negative staircase. Parallel experiments with cells in suspension indicated that Amytal and CCCP caused ATP to fall from 27.6 +/- 1.6 to 0.7 +/- 0.2 nmol/mg protein, and the percent rod-shaped cells to fall from 70 to 0% in 5 min. Removal of the inhibitors after 15 min caused a rebound in ATP to 5.3 +/- 1.5 nmol/mg within 2 min and 6.6 +/- 1.3 nmol/mg after 10 min.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Francielli de Cássia Yukari Nishimura ◽  
Ana Carolina de Almeida ◽  
Bianca Altrão Ratti ◽  
Tânia Ueda-Nakamura ◽  
Celso Vataru Nakamura ◽  
...  

Naringenin and quercetin are considered antioxidant compounds with promising activity against oxidative damage in human cells. However, no reports have described their effects on reactive oxygen species (ROS) production by phagocytes during microbicidal activity. Thus, the present study evaluated the effects of naringenin and quercetin on ROS production, specifically hypochlorous acid (HOCl), and their involvement in the microbicidal activity of neutrophils. Naringenin and quercetin inhibited HOCl production through different systems, but this inhibition was more pronounced for quercetin, even in the cell-free systems. With regard to the microbicidal activity of neutrophils, both naringenin and quercetin completely inhibited the killing ofStaphylococcus aureus. Altogether, these data indicate that the decrease in the oxidant activity of neutrophils induced by these compounds directly impaired the microbicidal activity of neutrophils. Naringenin and quercetin exerted their effects by controlling the effector mechanisms of ROS production, with both positive and negative effects of these antioxidant agents in oxidative stress conditions and on ROS in the microbicidal activity of phagocytes. The present results challenge the traditional view of antioxidants as improvers of pathological conditions.


Physiology ◽  
2015 ◽  
Vol 30 (1) ◽  
pp. 40-49 ◽  
Author(s):  
Myunghwan Choi ◽  
Sheldon J. J. Kwok ◽  
Seok Hyun Yun

Microscopic imaging techniques to visualize cellular behaviors in their natural environment play a pivotal role in biomedical research. Here, we review how recent technical advances in intravital microscopy have enabled unprecedented access to cellular physiology in various organs of mice in normal and diseased states.


2014 ◽  
Vol 42 (6) ◽  
pp. 1529-1533 ◽  
Author(s):  
Nir Qvit ◽  
Daria Mochly-Rosen

A large number of protein substrates are phosphorylated by each protein kinase under physiological and pathological conditions. However, it remains a challenge to determine which of these phosphorylated substrates of a given kinase is critical for each cellular response. Genetics enabled the generation of separation-of-function mutations that selectively cause a loss of one molecular event without affecting others, thus providing some tools to assess the importance of that one event for the measured physiological response. However, the genetic approach is laborious and not adaptable to all systems. Furthermore, pharmacological tools of the catalytic site are not optimal due to their non-selective nature. In the present brief review, we discuss some of the challenges in drug development that will regulate the multifunctional protein kinase Cδ (PKCδ).


2017 ◽  
Vol 5 (25) ◽  
pp. 4890-4900 ◽  
Author(s):  
Oncay Yasa ◽  
Ozge Uysal ◽  
Melis Sardan Ekiz ◽  
Mustafa O. Guler ◽  
Ayse B. Tekinay

Organizational complexity and functional diversity of the extracellular matrix regulate cellular behaviors.


2021 ◽  
Author(s):  
Sarah K. Van Houten ◽  
Michael T. K. Bramson ◽  
David T. Corr

ABSTRACTBioreactors are commonly used to apply biophysically-relevant stimulations to tissue-engineered constructs in order to explore how these stimuli influence tissue development, healing, and homeostasis. These bioreactors offer great flexibility as key features of the stimuli (e.g., duty cycle, frequency, amplitude, duration) can be controlled to elicit a desired cellular response. Controlled delivery of mechanical and/or electrical stimulation has been shown to improve the structure and function of engineered tissue constructs, compared to unstimulated controls, for applications in various musculoskeletal soft tissues. However, most bioreactors that apply mechanical and electrical stimulations, do so to a scaffold after the construct has developed, preventing study of the influence these stimuli have on early construct development. Thus, there is a need for a bioreactor that allows the direct application of mechanical and electrical stimulation to constructs as they develop, to enable such exploration and to better mimic key aspects of tissue development. Hence, the objective of this study was to develop and calibrate a bioreactor to deliver precise mechanical and electrical stimulation, either independently or in combination, to developing scaffold-free tissue constructs. Standard Flexcell Tissue Train plates were modified with stainless steel loading pins and stimulating electrodes to integrate direct mechanical and electrical stimulation, respectively, into our established scaffold-free, single-fiber engineering platform. Linear calibration curves were established, then used to apply precise dynamic mechanical and electrical stimulations, over a range of physiologically relevant strains (0.50, 0.70, 0.75, 1.0, 1.5%) and voltages (1.5, 3.5 V), respectively. Once calibrated, applied mechanical and electrical stimulations were not statistically different from their desired target values, and were consistent whether delivered independently or in combination. Indeed, concurrent delivery of mechanical and electrical stimulation resulted in a negligible change in mechanical (< 2%) and electrical (<1%) values, from their independently-delivered values. With this calibrated bioreactor, we can apply precise, controlled, reproducible mechanical and electrical stimulations, alone or in combination, to scaffold-free, tissue engineered constructs as they develop, to explore how these stimuli can be leveraged to advance and accelerate functional tissue engineering in a variety of musculoskeletal soft tissues.IMPACT STATEMENTAs the importance of biophysical stimulation in tissue engineering continues to be recognized and incorporated, this bioreactor provides a platform to further our understanding of the roles independent or combined mechanical and electrical stimulation have in tissue development and functional maturation, and may inform future tissue engineering approaches for clinical applications.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 1006-1006
Author(s):  
Tavia Roache

Abstract Mono-ribonucleotides are building blocks for polynucleotide RNA chains (e.g., messenger RNA), but if mis-incorporated into duplex DNA can cause mutagenesis and chromosomal instability. During DNA synthesis by Pol γ, remnants of unremoved RNA primers contribute to elevated mono-ribonucleotide triphosphates resulting in nucleotide pool imbalance, ultimately favoring mis-incorporated ribonucleotides during replication. Moreover, although polymerases generally replicate DNA with high fidelity, the steric gate occasionally allows a mis-incorporated ribonucleotide. Thus, a mono-ribonucleotide is one of the most abundant lesions in genomic DNA of eukaryotes. If unremoved from double-stranded DNA, the ribonucleotide exerts negative effects on replication, transcription, and genomic maintenance, with lasting effects on cellular homeostasis. Even a single ribonucleotide in telomeric DNA comprises shelterin binding and telomere capping causing vulnerability to spontaneous hydrolysis which potentiates telomere shortening. Consistent with this, a ribonucleotide positioned in double-helical DNA alters its structure by torsinally distorting the sugar-phosphate backbone. Fortunately, cellular response and repair pathways exist to help cells cope with mis-incorporated mono-ribonucleotides. The Ribonucleotide Excision Repair (RER) or a Topoisomerase 1 (Top1)-mediated pathway remove embedded ribonucleotides. For RER, RNase H2 incises 5’ of a mono-ribonucleotide, creating an access point for its removal. If cells are deficient in RNase H2, Top1 initiates removal of the ribonucleotide. However, Top1 is less accurate than RNase H2, which can lead to mutagenesis. Studying the mechanisms in which ribonucleotides are incorporated into DNA or further metabolized should provide insight to their negative consequences for chromosomal integrity, cancer, and auto-immune disease attributed to a genetic deficiency of RNase H2.


Sign in / Sign up

Export Citation Format

Share Document