scholarly journals English Phrase Speech Recognition Based on Continuous Speech Recognition Algorithm and Word Tree Constraints

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Haifan Du ◽  
Haiwen Duan

This paper combines domestic and international research results to analyze and study the difference between the attribute features of English phrase speech and noise to enhance the short-time energy, which is used to improve the threshold judgment sensitivity; noise addition to the discrepancy data set is used to enhance the recognition robustness. The backpropagation algorithm is improved to constrain the range of weight variation, avoid oscillation phenomenon, and shorten the training time. In the real English phrase sound recognition system, there are problems such as massive training data and low training efficiency caused by the super large-scale model parameters of the convolutional neural network. To address these problems, the NWBP algorithm is based on the oscillation phenomenon that tends to occur when searching for the minimum error value in the late training period of the network parameters, using the K-MEANS algorithm to obtain the seed nodes that approach the minimal error value, and using the boundary value rule to reduce the range of weight change to reduce the oscillation phenomenon so that the network error converges as soon as possible and improve the training efficiency. Through simulation experiments, the NWBP algorithm improves the degree of fitting and convergence speed in the training of complex convolutional neural networks compared with other algorithms, reduces the redundant computation, and shortens the training time to a certain extent, and the algorithm has the advantage of accelerating the convergence of the network compared with simple networks. The word tree constraint and its efficient storage structure are introduced, which improves the storage efficiency of the word tree constraint and the retrieval efficiency in the English phrase recognition search.

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Siyu Ji ◽  
Chenglin Wen

Neural network is a data-driven algorithm; the process established by the network model requires a large amount of training data, resulting in a significant amount of time spent in parameter training of the model. However, the system modal update occurs from time to time. Prediction using the original model parameters will cause the output of the model to deviate greatly from the true value. Traditional methods such as gradient descent and least squares methods are all centralized, making it difficult to adaptively update model parameters according to system changes. Firstly, in order to adaptively update the network parameters, this paper introduces the evaluation function and gives a new method to evaluate the parameters of the function. The new method without changing other parameters of the model updates some parameters in the model in real time to ensure the accuracy of the model. Then, based on the evaluation function, the Mean Impact Value (MIV) algorithm is used to calculate the weight of the feature, and the weighted data is brought into the established fault diagnosis model for fault diagnosis. Finally, the validity of this algorithm is verified by the example of UCI-Combined Cycle Power Plant (UCI-ccpp) simulation of standard data set.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
R. Manjula Devi ◽  
S. Kuppuswami ◽  
R. C. Suganthe

Artificial neural network has been extensively consumed training model for solving pattern recognition tasks. However, training a very huge training data set using complex neural network necessitates excessively high training time. In this correspondence, a new fast Linear Adaptive Skipping Training (LAST) algorithm for training artificial neural network (ANN) is instituted. The core essence of this paper is to ameliorate the training speed of ANN by exhibiting only the input samples that do not categorize perfectly in the previous epoch which dynamically reducing the number of input samples exhibited to the network at every single epoch without affecting the network’s accuracy. Thus decreasing the size of the training set can reduce the training time, thereby ameliorating the training speed. This LAST algorithm also determines how many epochs the particular input sample has to skip depending upon the successful classification of that input sample. This LAST algorithm can be incorporated into any supervised training algorithms. Experimental result shows that the training speed attained by LAST algorithm is preferably higher than that of other conventional training algorithms.


2018 ◽  
Vol 7 (04) ◽  
pp. 871-888 ◽  
Author(s):  
Sophie J. Lee ◽  
Howard Liu ◽  
Michael D. Ward

Improving geolocation accuracy in text data has long been a goal of automated text processing. We depart from the conventional method and introduce a two-stage supervised machine-learning algorithm that evaluates each location mention to be either correct or incorrect. We extract contextual information from texts, i.e., N-gram patterns for location words, mention frequency, and the context of sentences containing location words. We then estimate model parameters using a training data set and use this model to predict whether a location word in the test data set accurately represents the location of an event. We demonstrate these steps by constructing customized geolocation event data at the subnational level using news articles collected from around the world. The results show that the proposed algorithm outperforms existing geocoders even in a case added post hoc to test the generality of the developed algorithm.


Author(s):  
WENTAO MAO ◽  
JIUCHENG XU ◽  
SHENGJIE ZHAO ◽  
MEI TIAN

Recently, extreme learning machines (ELMs) have been a promising tool in solving a wide range of regression and classification applications. However, when modeling multiple related tasks in which only limited training data per task are available and the dimension is low, ELMs are generally hard to get impressive performance due to little help from the informative domain knowledge across tasks. To solve this problem, this paper extends ELM to the scenario of multi-task learning (MTL). First, based on the assumption that model parameters of related tasks are close to each other, a new regularization-based MTL algorithm for ELM is proposed to learn related tasks jointly via simple matrix inversion. For improving the learning performance, the algorithm proposed above is further formulated as a mixed integer programming in order to identify the grouping structure in which parameters are closer than others, and finally an alternating minimization method is presented to solve this optimization. Experiments conducted on a toy problem as well as real-life data set demonstrate the effectiveness of the proposed MTL algorithm compared to the classical ELM and the standard MTL algorithm.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4161 ◽  
Author(s):  
Hang ◽  
Zhang ◽  
Chen ◽  
Zhang ◽  
Wang

Plant leaf diseases are closely related to people's daily life. Due to the wide variety of diseases, it is not only time-consuming and labor-intensive to identify and classify diseases by artificial eyes, but also easy to be misidentified with having a high error rate. Therefore, we proposed a deep learning-based method to identify and classify plant leaf diseases. The proposed method can take the advantages of the neural network to extract the characteristics of diseased parts, and thus to classify target disease areas. To address the issues of long training convergence time and too-large model parameters, the traditional convolutional neural network was improved by combining a structure of inception module, a squeeze-and-excitation (SE) module and a global pooling layer to identify diseases. Through the Inception structure, the feature data of the convolutional layer were fused in multi-scales to improve the accuracy on the leaf disease dataset. Finally, the global average pooling layer was used instead of the fully connected layer to reduce the number of model parameters. Compared with some traditional convolutional neural networks, our model yielded better performance and achieved an accuracy of 91.7% on the test data set. At the same time, the number of model parameters and training time have also been greatly reduced. The experimental classification on plant leaf diseases indicated that our method is feasible and effective.


2021 ◽  
Author(s):  
Nguyen Ha Huy Cuong

Abstract In agriculture, a timely and accurate estimate of ripeness in the orchard improves the post-harvest process. Choosing fruits based on their maturity stages can reduce storage costs and increase market results. In addition, the estimation of the ripeness of the fruit based on the detection of input and output indicators has brought about practical effects in the harvesting process, as well as determining the amount of water needed for irrigation. pepper, the amount of fertilizer for the end of the season appropriate. In this paper, propose a technical solution for a model to detect persimmon green grapefruit fruit at agricultural farms, Vietnam. Aggregation model and transfer learning method are used. The proposed model contains two object detection sub models and the decision model is the pre-processed model, the transfer model and the corresponding aggregation model. Improving the YOLO algorithm is trained with more than one hundred object types, the total proposed processing is 500,000 images, from the COCO image data set used as a preprocessing model. Aggregation model and transfer learning method are also used as an initial step to train the model transferred by the transfer learning technique. Only images are used for transfer model training. Finally, the aggregation model with the techniques used to make decisions selects the best results from the pre-trained model and the transfer model. Using our proposed model, it has improved and reduced the time when analyzing the maximum number of training data sets and training time. The accuracy of model union is 98.20%. The test results of the classifier are proposed through a data set of 10000 images of each layer for sensitivity of 98.2%, specificity 97.2% with accuracy of 96.5% and 0, 98 in training for all grades.


2020 ◽  
Vol 16 ◽  
Author(s):  
Yifan Ying ◽  
Yongxi Jin ◽  
Xianchuan Wang ◽  
Jianshe Ma ◽  
Min Zeng ◽  
...  

Introduction: Hydrogen sulfide (H2S) is a lethal environmental and industrial poison. The mortality rate of occupational acute H2S poisoning reported in China is 23.1% ~ 50%. Due to the huge amount of information on metabolomics changes after body poisoning, it is important to use intelligent algorithms to mine multivariate interactions. Methods: This paper first uses GC-MS metabolomics to detect changes in the urine components of the poisoned group and control rats to form a metabolic data set, and then uses the SVM classification algorithm in machine learning to train the hydrogen sulfide poisoning training data set to obtain a classification recognition model. A batch of rats (n = 15) was randomly selected and exposed to 20 ppm H2S gas for 40 days (twice morning and evening, 1 hour each exposure) to prepare a chronic H2S rat poisoning model. The other rats (n = 15) were exposed to the same volume of air and 0 ppm hydrogen sulfide gas as the control group. The treated urine samples were tested using a GC-MS. Results: The method locates the optimal parameters of SVM, which improves the accuracy of SVM classification to 100%. This paper uses the information gain attribute evaluation method to screen out the top 6 biomarkers that contribute to the predicted category (Glycerol,β-Hydroxybutyric acid, arabinofuranose,Pentitol,L-Tyrosine,L-Proline). Conclusion: The SVM diagnostic model of hydrogen sulfide poisoning constructed in this work has training time and prediction accuracy; it has achieved excellent results and provided an intelligent decision-making method for the diagnosis of hydrogen sulfide poisoning.


2005 ◽  
Vol 23 (9) ◽  
pp. 2969-2974 ◽  
Author(s):  
N. Srivastava

Abstract. A logistic regression model is implemented for predicting the occurrence of intense/super-intense geomagnetic storms. A binary dependent variable, indicating the occurrence of intense/super-intense geomagnetic storms, is regressed against a series of independent model variables that define a number of solar and interplanetary properties of geo-effective CMEs. The model parameters (regression coefficients) are estimated from a training data set which was extracted from a dataset of 64 geo-effective CMEs observed during 1996-2002. The trained model is validated by predicting the occurrence of geomagnetic storms from a validation dataset, also extracted from the same data set of 64 geo-effective CMEs, recorded during 1996-2002, but not used for training the model. The model predicts 78% of the geomagnetic storms from the validation data set. In addition, the model predicts 85% of the geomagnetic storms from the training data set. These results indicate that logistic regression models can be effectively used for predicting the occurrence of intense geomagnetic storms from a set of solar and interplanetary factors.


2020 ◽  
Vol 10 (15) ◽  
pp. 5216
Author(s):  
Anh Hong Nguyen ◽  
Michael Rath ◽  
Erik Leitinger ◽  
Khang Van Nguyen ◽  
Klaus Witrisal

The consideration of ultra-wideband (UWB) and mm-wave signals allows for a channel description decomposed into specular multipath components (SMCs) and dense/diffuse multipath. In this paper, the amplitude and phase of SMCs are studied. Gaussian Process regression (GPR) is used as a tool to analyze and predict the SMC amplitudes and phases based on a measured training data set. In this regard, the dependency of the amplitude (and phase) on the angle-of-arrival/angle-of-departure of a multipath component is analyzed, which accounts for the incident angle and incident position of the signal at a reflecting surface—and thus for the reflection characteristics of the building material—and for the antenna gain patterns. The GPR model describes the similarities between different data points. Based on its model parameters and the training data, the amplitudes of SMCs are predicted at receiver positions that have not been measured in the experiment. The method can be used to predict a UWB channel impulse response at an arbitrary position in the environment.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2767
Author(s):  
Wenqiong Zhang ◽  
Yiwei Huang ◽  
Jianfei Tong ◽  
Ming Bao ◽  
Xiaodong Li

Low-frequency multi-source direction-of-arrival (DOA) estimation has been challenging for micro-aperture arrays. Deep learning (DL)-based models have been introduced to this problem. Generally, existing DL-based methods formulate DOA estimation as a multi-label multi-classification problem. However, the accuracy of these methods is limited by the number of grids, and the performance is overly dependent on the training data set. In this paper, we propose an off-grid DL-based DOA estimation. The backbone is based on circularly fully convolutional networks (CFCN), trained by the data set labeled by space-frequency pseudo-spectra, and provides on-grid DOA proposals. Then, the regressor is developed to estimate the precise DOAs according to corresponding proposals and features. In this framework, spatial phase features are extracted by the circular convolution calculation. The improvement in spatial resolution is converted to increasing the dimensionality of features by rotating convolutional networks. This model ensures that the DOA estimations at different sub-bands have the same interpretation ability and effectively reduce network model parameters. The simulation and semi-anechoic chamber experiment results show that CFCN-based DOA is superior to existing methods in terms of generalization ability, resolution, and accuracy.


Sign in / Sign up

Export Citation Format

Share Document