scholarly journals Degradation of Diclofenac under Irradiation of UV Lamp and Solar Light Using ZnO Photo Catalyst

2022 ◽  
Vol 12 (1) ◽  
pp. 76
Author(s):  
Muhammad Tanveer ◽  
Gokce Tezcanli ◽  
Muhammad Tahseen Sadiq ◽  
Syeda Memoona Kazmi ◽  
Nawal Noshad ◽  
...  

Diclofenac sodium (DCF) is a non-steroidal anti-inflammatory drug mainly used as an analgesic, arthritic and anti-rheumatic. This study deals with the degradation of diclofenac by photo catalytic-based advanced oxidation processes. Artificial UV lamp and solar rays have been applied to activate the ZnO catalyst, thereby generating highly oxidizing species. These species initiate the degradation process of the drug, which results in intermediates that finally dissociate into carbon dioxide and water. The solar reactor system is comprised of quartz and borosilicate tubes alternatively for the absorption and transmission of the solar rays to the pollutant sample. The degradation rate has been analyzed by composition analysis using high performance liquid chromatography. TOC and COD tests have also been conducted for degraded samples. ZnO catalyst loading was tested from 0.1 gm/L to 1 gm/L and the degradation rate showed a rising trend up to 0.250 gm/L, but further increase in loading resulted in a drop in degradation. Similarly, degradation is higher in acidic condition as compared to neutral or basic pH. The results showed a higher degradation rate for UV lamp irradiation as compared to the solar system. Moreover, TOC and COD reduction is also found to be higher for UV lamp photo catalysis.

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 362-363
Author(s):  
Daniil Khvostov ◽  
Natalya Vostrikova ◽  
Irina M Chernukha

Abstract Functional, particularly personalized meat-based foods are of more in demand by a consumer today. Functional additives, such as plant components and animal proteins from bovine or porcine tissues have been successfully used. With many ingredients added to foods, it is important to provide quality and composition monitoring to confirm the products’ authenticity, to identify undeclared or rarely used types of raw meat in product formulations. For example, if animal heart tissue is a component of a product formulation or if aorta tissue presents in a product due to improper trimming. Different methods are used to identify raw materials, including new approaches in proteomics and peptidomics that are considered the most effective modern methods nowadays. The purpose of the study is meat product composition analysis and special biomarker peptide identification to confirm the presence of heart and aorta tissue in a finished meat product. Over 20 amino acid sequences were checked based on earlier obtained data. Those amino acid sequences were analyzed with a high-performance liquid chromatography with mass spectrometric detection as described. The MS settings were selected using the Skyline. Signal-to-Noise ratio (S/N) over 10 units were used to choose the best peptide candidates. Seven peptides were found in porcine hearts. The best candidate was peptide VNVDEVGGEALGR (S/N - 73.10±5.3) from β-Hemoglobin. Two marker peptides from serum albumin were selected for pork aorta: TVLGNFAAFVQK (S/N 53.51±2.4) and EVTEFAK (S/N 31.69±4.1). These biomarkers showed the best detection and specificity. The multiply reaction monitoring method made it possible to identify the most/best specific peptides—biomarkers that could confirm the heart and/or aorta in meat products. The method can be used for comparative research or identification of best peptides that are specific to any type of animal tissue. The work was supported by the Russian Science Foundation, project no. 16-16- 10073.


2016 ◽  
Vol 9 (12) ◽  
pp. 3736-3745 ◽  
Author(s):  
Haihua Wu ◽  
Haobo Li ◽  
Xinfei Zhao ◽  
Qingfei Liu ◽  
Jing Wang ◽  
...  

High-density coordination unsaturated copper(i)–nitrogen embedded in graphene demonstrates a high performance and stability in primary zinc–air batteries with ultralow catalyst loading.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 190
Author(s):  
Ali Hassan ◽  
Muhammad Azam ◽  
Yeong Hwan Ahn ◽  
Muhammad Zubair ◽  
Yu Cao ◽  
...  

Organic–inorganic hybrid perovskite photodetectors are gaining much interest recently for their high performance in photodetection, due to excellent light absorption, low cost, and ease of fabrication. Lower defect density and large grain size are always favorable for efficient and stable devices. Herein, we applied the interface engineering technique for hybrid trilayer (TiO2/graphene oxide/perovskite) photodetector to attain better crystallinity and defect passivation. The graphene oxide (GO) sandwich layer has been introduced in the perovskite photodetector for improved crystallization, better charge extraction, low dark current, and enhanced carrier lifetime. Moreover, the trilayer photodetector exhibits improved device performance with a high on/off ratio of 1.3 × 104, high responsivity of 3.38 AW−1, and low dark current of 1.55 × 10−11 A. The insertion of the GO layer also suppressed the perovskite degradation process and consequently improved the device stability. The current study focuses on the significance of interface engineering to boost device performance by improving interfacial defect passivation and better carrier transport.


Author(s):  
Fraser King ◽  
Jenny Been ◽  
Robert Worthingham ◽  
Grant Rubie

Three-layer FBE-polyolefin coatings offer the promise of good adhesive and corrosion properties from the FBE layer coupled with resistance to mechanical damage from the outer polyolefin layer. TransCanada Pipelines have been investigating the long-term behaviour of High Performance Composite Coating (HPCC) using a combination of laboratory testing and field trials. In the laboratory, panels of HPCC were subjected to standard CD disbondment testing following a two-stage degradation process. The degradation process, designed to simulate field exposure, involved impact damage followed by exposure to either a hot-water soak (60°C), or to microbiologically active soil with and without the application of CP. Following exposure, the duplicate panels were subject to 28-day CD disbondment tests to determine the extent of damage caused by the combination of impact and soil/hot water exposure. In the field, a section of HPCC coating was excavated and examined after 11 years service. In addition to visual inspection, the coating was examined in situ using a newly developed impedance technique EISPlus. This technique is a development of earlier EIS techniques and allows the dielectric properties of the coating to be determined in addition to the impedance of the solution-filled pores. EISPlus provides an improved sensitivity for high-impedance coatings, such as FBE, HPCC, and polyolefin tape. Furthermore, since it is a dry technique, rapid measurements can be made on coatings exposed to field conditions allowing the in-service performance to be determined. Results of both the laboratory testing and field EISPlus measurements are presented and the long-term performance of the coating discussed.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2394 ◽  
Author(s):  
Jiajun Zeng ◽  
Huanhua Xu ◽  
Yu Cai ◽  
Yan Xuan ◽  
Jia Liu ◽  
...  

(−)-Epigallocatechin gallate (EGCG), is the main catechin found in green tea, and has several beneficial effects. This study investigated the stability of EGCG aqueous solution under different stored and ultrasonic conditions to determine whether it can be used with an ultrasonic dental scaler to treat periodontal infection. Four concentrations (0.05, 0.1, 0.15, 2 mg/mL) of EGCG aqueous solution were prepared and stored under four different conditions (A: Exposed to neither sunlight nor air, B: Exposed to sunlight, but not air, C: Not exposed to sunlight, but air, D: Exposed to sunlight and air) for two days. The degradation rate of EGCG was measured by high performance liquid chromatography (HPLC). On the other hand, an ultrasonic dental scaler was used to atomize the EGCG solution under four different conditions (a: Exposed to neither air nor sunlight, b: Not exposed to air, but sunlight, c: Not exposed to sunlight, but air, d: Exposed to air and sunlight), the degradation of EGCG was measured by HPLC. We found that the stability of EGCG was concentration-dependent in water at room temperature. Both sunlight and oxygen influenced the stability of EGCG, and oxygen had a more pronounced effect on stability of EGCG than sunlight. The most important conclusion was that the ultrasound may accelerate the degradation of EGCG due to the presence of oxygen and sunlight, but not because of the ultrasonic vibration. Thus, EGCG aqueous solution has the potential to be used through an ultrasonic dental scaler to treat periodontal infection in the future.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1972 ◽  
Author(s):  
Heng Yue ◽  
Qianqian Xu ◽  
Xianheng Li ◽  
Jeevithan Elango ◽  
Wenhui Wu ◽  
...  

To investigate the structure and immunomodulatory activity of polysaccharide from Solanum muricatum, a novel acid polysaccharide named SMP-3a was purified from Solanum muricatum pulp through DEAE-52 cellulose column and Sephadex G-200 chromatography. Monosaccharide composition analysis showed that SMP-3a was mainly composed of rhamnose, arabinose, galactose, and galacturonic acid with the molar ratio of 1.09:2.64:1.54:1. The average molecular weight was found to be 227 kDa by high performance gel permeation chromatography (HPGPC). Thermal studies revealed the SMP-3a was a thermally stable polymer. Based on the results of methylation and NMR analysis, the backbone chain of SMP-3a was composed of →2)-α-l-Rhap-(1→, →4)-α-d-GalpA-(1→ and →4)-α-d-Galp-(1→. The side chain was consisted of α-l-Araf-(1→ and →5)-α-l-Araf-(1→. Immunomodulatory assay indicated that SMP-3a could significantly promote the proliferation of macrophages and stimulate the secretion of cytokines, including TNF-α, IL-1β, and IL-6. Our results suggested that SMP-3a could be used as a novel potential immunomodulatory agent in functional food.


Author(s):  
Kunxiang Yi ◽  
Gang Kou ◽  
Kaiye Gao ◽  
Hui Xiao

Many real-world engineering systems such as aerospace systems, intelligent transportation systems and high-performance computing systems are designed to complete missions in multiple phases. These types of systems are known as phased-mission systems. Inspired by an industrial heating system, this research proposes a generalized linear sliding window system with phased missions. The proposed system consists of N nodes with M multi-state elements that are subject to degradation. The linear sliding window system fails if the cumulative performance of any r consecutive nodes is less than the pre-determined demand in any phase. The degradation process of each element is modeled by a continuous-time Markov chain. A novel reliability evaluation algorithm is proposed for the linear sliding window system with phased missions by extending the universal generating function technique. Furthermore, the optimal element allocation strategy is determined using the particle swarm optimization. The effectiveness of the proposed algorithm is confirmed by a set of numerical experiments.


2012 ◽  
Vol 457-458 ◽  
pp. 521-524 ◽  
Author(s):  
Wen Jie Zhang ◽  
Qian Li ◽  
Hong Bo He

The functions of applied potential to the photoelectrocatalytic degradation process of methyl orange were investigated. When using 0.05 M NaCl and under different applied potentials, the degradation rate increased obviously with increasing applied potential. When the applied potential was between 0.6 V-1.0 V, the degradation rate was enhanced drastically. The detected current values got larger as the applied potential increased from 0 up to 1.2 V. There was no direct electro-degradation to the dye in the solution. The applied potential and the irradiated light had synergetic effect when they were applied to the solution at the same time. While after irradiation for 0 to 60 min, with the increasing reaction time, methyl orange absorption peak intensity shrank obviously. The azo and benzene groups in methyl orange degraded totally under photocatalytic process.


2011 ◽  
Vol 356-360 ◽  
pp. 25-30 ◽  
Author(s):  
Jin You Shen ◽  
Chao Zhang ◽  
Xiu Yun Sun ◽  
Jian Sheng Li ◽  
Lian Jun Wang

Recalcitrant and toxic organic pollutants such as aniline from numerous industrial wastewaters can not be efficiently removed using the conventional methods. This study reported a concept for mineralization of aniline in an anoxic reactor, where enhanced biodegradation of aniline were achieved under anoxic conditions. The results indicated that with the presence of nitrate, the degradation rate of aniline was greatly improved compared with the absence of nitrate. From the UV-vis adsorption spectra, COD analysis and denitrification performance analysis, it could be inferred that the cleavage of benzene ring of aniline occurred, aniline could be mineralization by microorganisms under the anoxic condition. However, aniline removal rate was lower compared to aerobic degradation process, and thus needs a significant improvement.


Sign in / Sign up

Export Citation Format

Share Document