scholarly journals The Toxicity of Universal Dental Adhesives: An In Vitro Study

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2653
Author(s):  
Adam Wawrzynkiewicz ◽  
Wioletta Rozpedek-Kaminska ◽  
Grzegorz Galita ◽  
Monika Lukomska-Szymanska ◽  
Barbara Lapinska ◽  
...  

There is no consensus in the literature regarding the potential toxicity of universal dental adhesives (UDA). Being used in close proximity to the pulp, their biocompatibility should be an important factor in dental research. The aim of the present study was to evaluate the biocompatibility of UDA in an in vitro model. The study was performed using a monocyte/macrophage peripheral blood SC cell line (ATCC CRL-9855) on four specific UDA, namely: All-Bond Universal (Bisco); CLEARFIL Universal Bond Quick (Kuraray); G-Premio BOND (GC); Single Bond Universal (3M ESPE). The cytotoxicity of the investigated UDA was measured using the XTT colorimetric assay. The genotoxicity of the analyzed compounds was evaluated using an alkaline version of the comet assay. Furthermore, flow cytometry (FC) apoptosis detection was performed using the FITC Annexin V Apoptosis Detection Kit I. FC cell-cycle arrest assessment was performed using propidium iodide staining. The study observed significant differences in the toxicity of the UDA that were tested, as G-Premio BOND showed significant in vitro toxicity in all of the tests performed, while All-Bond Universal, CLEARFIL Universal Bond Quick and Single Bond Universal did not present any significant toxic effects toward SC cell line. The in vitro toxicity of UDA should be taken into consideration prior to in vivo and clinical studies. The flow cytometry could improve the accuracy of dental materials research and should be incorporated into the standardization criteria.

2020 ◽  
Vol 11 (SPL4) ◽  
pp. 805-808
Author(s):  
Ravikumar Raju ◽  
Teja ◽  
Sravanathi P ◽  
Muthu Babu K

Breast cancer is the subsequent foremost reason of cancer death in a woman and ranks as the primary foremost reason of death in India. In its conduct, several measures and recommendation are considered. Homoeopathic medicines are one of the part of a corresponding, and another medicine is utilized for the treatment of cancer. The main purpose of the investigation is to evaluate the anticancer action of homoeopathic arrangements of Asterias rubens  on the basis of the similia principle. We directed an in vitro study using MTT assay to control the result of ultra diluted homoeopathic preparation in contradiction of two human breast glandular cancer cell lines(MCF-7 and MDA-MD- 231), frequently used for the breast cancer treatment, by testing the feasibility of breast cancer (MCF-7 and MDA-MD-231) cell line, with various attenuations of Asterias rubens  at 24 hrs. Multiple comparisons between tested reagents at different concentrations confirmed the significance of the said results. At a dilution of 1:25 6CH and 30CH potency shown superior activity on MCF-7 and no such significant changes on MDA-MD-231 at any dilutions As it fails to offer estrogen receptor(ER) Also progesterone receptor (PR) expression, and also HER2 (human epidermal development variable receptor2) so continuously a triple-negative breast cancer it will be a hostility manifestation for breast cancer with restricted medicine choices. However, further potency needs to be tested. These preliminary significant results warrant further in vitro and in vivo studies to estimate the possible of Asterias rubens  a medicine to treat breast cancer.


2021 ◽  
Vol 11 ◽  
Author(s):  
Tingting Liu ◽  
Hongyue Wang ◽  
Zhiyong Liu ◽  
Jing Zhang ◽  
Yan Liu ◽  
...  

Objective: We screened the TNBC stem cells using phage display (PD) and acquired the specific binding clones; and then the positive phage DNAs were amplified and extracted, synthesized with specific polypeptides, and labeled with fluorescein isothiocyanate (FITC). Finally, we identified the specificity of the polypeptides in vitro and in vivo.Methods: Human breast cancer cell line MDA-MB-231 and human mammary gland cell line hs578bst were chosen in our study, and MDA-MB-231 breast cancer stem cells (BCSCs) were cultured and identified by flow cytometry. The phage peptide library was screened using MDA-MB-231 BCSCs, the positive phage clones were identified by ELISA, and the DNA of the positive phages was extracted and sent to a biotechnology company for sequencing. According to the sequencing results, a specific polypeptide was synthesized and labeled with FITC. In the end, the specificity of a polypeptide to BCSCs was identified in vivo and in vitro.Results: The MDA-MB-231 BCSCs were cultured and enriched with the “serum and serum-free alternate” method. The BCSCs were found to have characteristics of CD44+/CD24−/low epithelial surface antigen (ESA) and ALDH+ with flow cytometry. The phage was enriched to 200-fold after three rounds of screening for MDA-MB-231 BCSCs. The positive phages were sequenced; then a polypeptide named M58 was synthesized according to sequencing results. Polypeptide M58 has a specific affinity to MDA-MB-231 BCSCs in vivo and in vitro.Conclusion: Specific polypeptides binding to MDA-MB-231 BCSCs were screened out by PD screening method, which laid a theoretical foundation for the targeted therapy and further research of BCSCs.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 377-377
Author(s):  
Maryam Ghalandary ◽  
Yuqiao Gao ◽  
Martin Becker ◽  
Diana Amend ◽  
Klaus H. Metzeler ◽  
...  

Abstract Background: The prognosis of patients with acute myeloid leukemia (AML) remains poor and novel therapeutic options are intensively needed. Targeted therapies specifically address molecules with essential function for AML and deciphering novel essential target genes is of utmost importance. Functional genomics via CRISPR\Cas9 technology paves the way for the systematic discovery of novel essential genes, but was so far mostly restricted to studying cell lines in vitro, lacking features of, e.g., primary tumor cells and the in vivo tumor microenvironment. To move closer to the clinical situation in patients, we used the CRISPR\Cas9 technology in patient-derived xenograft (PDX) models of AML in vivo. Methods: Primary tumor cells from seven patients with AML were transplanted into immunocompromised NSG mice and serially transplantable PDX models derived thereof. PDX models were selected which carry the AML specific mutations of interest at variant allele frequencies close to 0.5. PDX cells were lentivirally transduced to express the Cas9 protein and a sgRNA; successfully transduced PDX cells were enriched by flow cytometry gating on a recombinant fluorochrome or by puromycin. The customized sgRNA library was designed using the CLUE (www.crispr-clue.de) platform and cloned into a lentiviral vector with five different sgRNAs per target gene, plus positive and negative controls (Becker et al., Nucleic Acids Res. 2020). PDX cells were lentivirally transduced with the CRISPR/Cas9 sgRNA library, transplanted into NSG mice, grown in vivo and cells re-isolated at advanced AML disease. sgRNA distribution was measured by next generation sequencing and compared to input control using the MAGeCK pipeline. Interesting dropout hits from PDX in vivo screens were validated by fluorochrome-guided competitive in vivo experiments in the PDX models, comparing growth of PDX AML cells with knockout of the gene of interest versus control knockout in the same mouse. PDX cells were transduced with lentiviral vectors expressing a single sgRNA, using in parallel three different sgRNAs per target gene. Targeting and control sgRNAs were marked by different fluorochromes; PDX cells expressing targeting or control sgRNA were mixed at a 1:1 ratio, injected into NSG mice and PDX models competitively grown until advanced disease stage, when cell distributions was determined by flow cytometry. Human AML cell lines were studied in vitro for comparison. Results: In search for genes with essential function in AML, we cloned a small customized sgRNA library targeting 34 genes recurrently mutated in AML and tested the library in two PDX AML models in vivo. From the dropouts, we validated most interesting target genes using fluorochrome-guided competitive in vivo assays. Knockout of NPM1 abrogated in vivo growth in all PDX AML models tested, reproducing the known common essential function of NPM1. KRAS proved an essential function in PDX AML models both with and without an oncogenic mutation in KRAS, although with a stronger effect upon KRAS mutation, suggesting that patients with tumors both with and without KRAS mutation might benefit from treatment inhibiting KRAS. Surprising results were obtained for WT1 and DNMT3A. Both genes are frequently mutated in AML, but most AML cell lines tested in vitro do not show an essential function of any of the two genes, in published knockdown or knockout data, including from the Cancer Dependency Map database. On the contrary, knockout of either WT1 or DNMT3A was shown to enhance growth of AML cell lines and increase leukemogenesis in certain models. In PDX models in vivo, we found a clearly essential function for DNMT3A in all AML samples and WT1 in most samples tested and PDX in vivo results were discordant to cell line in vitro data, suggesting that cell line inherent features and/or the in vivo environment influence the function of WT1 and DNMT3A. Conclusion: We conclude that functional genomics in PDX models in vivo allows discovering essentialities hidden for cell line in vitro approaches. WT1 and DNMT3A harbor the potential to represent attractive therapeutic targets in AML under in vivo conditions, warranting further evaluation. Disclosures No relevant conflicts of interest to declare.


Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Emily N Ord ◽  
Chris McCabe ◽  
Catriona McDonald ◽  
John D McClure ◽  
I M Macrae ◽  
...  

MicroRNAs (miRNAs) are small non-coding RNA molecules (20 - 24 nucleotides) that inhibit mRNA translation. Demonstrated to have key roles in normal CNS development & function, they have also emerged to have effecter roles in the pathogenesis & endogenous repair mechanisms following stroke. To select 2 miRNAs to modulate therapeutically we profiled miRNA expression of the evolving (24h) & final (72h) peri-infarct tissue of adult spontaneously hypertensive stroke-prone rats (SHRSP) following 45 min transient middle cerebral artery occlusion (tMCAO). T2-weighted magnetic resonance imaging (MRI) was used for accurate dissection of the peri-infarct tissue, with equivalent brain regions taken from time-matched shams (n=6/group). Of the 754 miRNAs evaluated (TaqMan® human miRNA microarray card v3.0 Applied Biosystems) 89 were determined as differently regulated following tMCAO. 22 of these miRNAs were relevant in stroke & were thus validated by Taqman® qRT-PCR using specific probes (n=9 /group). 5 miRNAs were successfully validated; miR-34b & miR-520b were selected as miRNAs of interest due to their novelty, time of endogenous regulation & targets. An in vitro study to determine whether upregulation/knock-down of these miRNAs would demonstrate functional effects in classical hypoxic pathways was performed. A rat neuronal cell line (B50) & glial cell line (B92) were subjected to 9hr hypoxia (1% O2 -serum) & 24h reoxygenation (+serum) +/- miR-34b or miR-520b regulation. Upregulation of either miRNA in B50 cells demonstrated a reduction in apoptosis, assessed qualitatively by Caspase-3 immunocytochemistry & quantitatively by cell death detection ELISA (p<0.01 vs hypoxic non-treated cells (NTC)). Upregulation of either miRNA in B92 cells significantly reduced superoxide production, assessed by electron paramagnetic resonance (p<0.001 vs hypoxic NTC). MiR-520b significantly lowered levels of lipid peroxidation in B92 cells, assessed by malondialdehyde assay, & both were significantly effective in B50 cells (p<0.01 vs hypoxic NTC). These data suggest miR-34b & -520b upregulation ameliorates damage following hypoxia/reperfusion in cerebral cell lines. Future studies will assess the effect of modulating these miRNAs in vivo.


2013 ◽  
Vol 31 (6_suppl) ◽  
pp. 294-294
Author(s):  
Weiguo Jian ◽  
Jonathan M. Levitt ◽  
Keith S. Chan ◽  
Seth P. Lerner ◽  
Guru Sonpavde

294 Background: Lenalidomide (Len) is an immunomodulatory drug (IMiD) approved for hematologic conditions and demonstrates immune modulation, anti-angiogenic activity and direct anti-tumor cytotoxicity. A rationale can be made to evaluate the preclinical activity of Len in UC. Methods: The in vitro anti-tumor activity of Len was evaluated in 4 human (5637, TCC-SUP, RT4, RT112) and 1 murine (MB49) cell line. Anti-proliferative activity activity (MTT assay), apoptosis (Annexin-FITC immunohistochemistry [IHC], flow cytometry) and cell viability by colony forming assay were measured. In vivo activity of daily oral Len 10 mg/kg or placebo orally for 5 days a week for up to 4 weeks was examined in syngeneic immunocompetent C57BL/6 mice bearing subcutaneous (SC) MB49-Luc25 tumors and RT4 subcutaneous xenografts. Tumors underwent immunohistochemistry (IHC) for microvessel density (CD31), apoptosis (cleaved caspase [cc]-3) and CD3+/CD20+ lymphocyte infiltration. Cereblon, a molecular target of Len was analyzed by IHC. Results: In vitro cultures for 3 days with daily repletion of Len showed significant pro-apoptotic activity (flow cytometry) at low micromolar concentrations attainable in human subjects (2.2 µM) against RT4 cells, a superficially invasive human UC cell line. Long-term cultures of RT4 cells for 2 weeks with daily repletion of Len significantly reduced cell viability and colony forming ability. Cereblon expression was numerically lower in sensitive RT4 cells compared to resistant 5637 cells (p=NS). In the immunocompetent model in vivo, Len did not decrease tumor size, or increase cc-3 and CD3+/CD20+ lymphocytes, but post-Len tumors exhibited decreased CD31 (p<0.05). In RT4 xenografts, Len significantly decreased the size of tumors and CD31, and increased cc-3 (all p<0.05). Cereblon expression increased in Len treated RT4 xenografts (p=0.024). Conclusions: Lenalidomide demonstrated selective preclinical activity against superficially invasive low grade human UC cells attributable to direct tumor cell apoptosis and anti-angiogenic activity. Clinical evaluation in patients with low grade or non-invasive UC and further study of cereblon as a predictive biomarker may be warranted.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2951-2951 ◽  
Author(s):  
Thomas Ippolito ◽  
Cory Mavis ◽  
Juan Gu ◽  
Francisco J. Hernandez-Ilizaliturri ◽  
Matthew J. Barth

Abstract Background: Reports of recurrent genomic alterations in Burkitt lymphoma (BL) have identified multiple recurrent alterations that result in activation of PI3K highlighting the importance of the PI3K/AKT/mTOR pathway in Burkitt lymphomagenesis. In a cell line model of resistant BL, we have previously identified an increase of PI3K/AKT/mTOR pathway activation suggesting a role in therapy resistance. While inhibition of PI3K-delta using the isoform specific inhibitor idelalisib has demonstrated clinical activity in indolent lymphomas, limited single agent activity has been observed in more aggressive variants. Pre-clinical investigation of idelalisib in BL indicated similar somewhat limited in vitro activity with synergistic activity in combination with chemotherapy. Broader inhibition of both upstream PI3K and downstream mTOR may exhibit more significant anti-lymphoma activity. Objectives: Investigate the in vitro and in vivo activity of the dual pan-PI3K/mTOR inhibitor omipalisib (GSK458) in chemotherapy-sensitive and -resistant BL cell line models. Methods: Experiments were conducted in Raji, Raji 4RH (chemotherapy-rituximab resistant), Ramos, and Daudi BL cells. Cell viability following exposure to omipalisib +/- chemotherapy was analyzed using Cell-Titer Glo and Alamar blu assays. Induction of apoptosis was assessed by flow cytometry for Annexin V (AV)-propidium iodide (PI) staining. Downstream effects of omipalisib on PI3K/Akt/mTOR signaling were analyzed using western blotting. Cell cycle analysis was performed by flow cytometry using PI staining. Synergy of combination exposures was determined by calculation of the combination index (CI) using CalcuSyn software. In vivo activity was evaluated using disseminated Raji and subcutaneous Ramos SCID mouse xenograft models. The survival end point was hind limb paralysis in the disseminated model and tumor diameter >2cm in the subcutaneous model. Mice were treated with vehicle or omipalisib daily by oral gavage. Median survival was compared by Kaplan-Meier analysis. Results: Exposure of BL cells to omipalisib for 24-72 hours resulted in a dose- and time-dependent decrease in viable cells at nM concentrations (48h IC50 values: Raji=1.2uM, Raji 4RH=0.02uM, Ramos=0.01uM, Daudi=0.01uM) (Figure 1A). Marked induction of apoptosis occurred following 72h exposure to omipalisib primarily in chemosensitive cells with half-maximal effect noted at approximately 200nM, but requiring significantly higher concentrations to induce apoptosis in therapy resistant Raji 4RH cells (%AV positive at 200nM: Raji=40.7%, Raji 4RH=4.4%, Ramos=59.4% and Daudi=46.9%). Downstream of PI3K/Akt/mTOR, S6 and GSK3β showed reduced phosphorylation after 30 minute omipalisib exposure. G1 cell cycle arrest occurred in all cell lines following exposure to omipalisib for 72 hours; however, chemotherapy-resistant Raji 4RH cells arrested in G2/M at higher concentrations. BL cells exposed to omipalisib in combination with either doxorubicin or dexamethasone, exhibited synergistic anti-tumor activity (CI<0.9) with synergistic induction of apoptosis in therapy sensitive cells exposed to omipalisib and chemotherapy. NOD-SCID mice injected via tail vein with Raji-luc (provided by Dr. Mitchell Cairo) and treated with omipalisib demonstrated decreased luciferase signal compared to controls (Figure 1C) while mice with established subcutaneous Ramos xenografted tumors treated with omipalisib exhibited slower tumor progression compared to controls (Figure 1B), though with only modest prolongation of survival (median 28 vs 34 days, n=15/group, p<0.05). Conclusion: Dual PI3K-mTOR inhibitor omipalisib suppresses the PI3K/Akt/mTOR pathway leading to induction of apoptosis, impaired BL cell proliferation in vitro and in vivo and exhibits synergistic in vitro activity when combined with cytotoxic chemotherapy highlighting the relevance of PI3K/Akt/mTOR pathway inhibition as a potential therapeutic option in BL. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 52 (1) ◽  
pp. 36
Author(s):  
Nike Hendrijantini

Background: Mesenchymal stem cells (MSCs) and scaffold combination constitute a promising approach currently adopted for tissue engineering. Umbilical cord-derived mesenchymal stem cells (hUC-MSCs) are easily obtained and non-invasive. Gelatine and alginate constitute a biocompatible natural polymer scaffold. At present, a cytotoxicity comparison of gelatine and alginate to hUC-MSCs is not widely conducted Purpose: This study aimed to compare the cytotoxicity of gelatine and alginate in hUC-MSCs in vitro. Methods: Isolation and culture were performed on hUC-MSCs derived from healthy full-term neonates. Flow Cytometry CD90, CD105 and CD73 phenotype characterization was performed in passage 4. 3-(4,5-dimethythiazol- 2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay was performed to measure the cytotoxicity. The three sample groups were: (T1) hUC-MSCs with α-MEM (alpha-minimum essential medium) solution as control; (T2) hUC-MSCs with gelatine; (T3) hUC-MSCs with alginate Results: Flow cytometry of hUC-MSCs displayed positive CD90, CD105 and CD73 surface markers. Gelatine and alginate had no effect on the viability of hUC-MSCs and no statistically significant difference (p>0.05) of cytotoxicity between gelatine and alginate to hUC-MSCs. Conclusion: Gelatine and alginate proved to be non-toxic to hUC-MSCs in vitro.


2020 ◽  
Vol 7 (4) ◽  
Author(s):  
Amir KarimiPourSaryazdi ◽  
Pooya Tavakoli ◽  
Mohammad Barati ◽  
Fatemeh Ghaffarifar ◽  
Ali Dalir Ghaffari ◽  
...  

Background: Toxoplasmosis is a tropical disease that is opportunistic in immunocompromised patients. Objectives: In this research, our goal was to assess the anti-parasitic effect of silver nanoparticles (Ag-NPs) based on ginger extract on T. gondii tachyzoites. Methods: This study was conducted to assess the effects of various concentrations of nanoparticles on the parasite using light microscopy. The MTT assay was also conducted to evaluate the toxic effects of silver nanoparticles based on ginger extract on macrophage cells. In addition, the potential apoptosis of T. gondii by silver NPs was assessed using the flow cytometry technique. Results: Based on the tachyzoite assay using microscopic examination, it was observed that the higher the NPs concentration and the longer the parasite’s exposure to NPs, the greater the lethal effect of NPs on tachyzoites. The IC50 (inhibitory concentration) for NPs against T. gondii tachyzoites was 2 ppm. Also, according to the MTT assay, the 40 ppm concentration of nanoparticles had the most toxic impact on macrophages. Moreover, silver NPs led to apoptosis in approximately 55.22% of tachyzoites based on the flow cytometry technique. Conclusions: Based on the above results, it is concluded that silver nanoparticles based on ginger extract have a lethal effect on T. gondii and induce apoptosis in this parasite. This study encourages further studies in vivo.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3487-3487
Author(s):  
Michael Timm ◽  
Linda Wellik ◽  
Teresa Kimlinger ◽  
Jessica Haug ◽  
Michael Kline ◽  
...  

Abstract Background: Multiple myeloma remains incurable with current approaches and newer therapies are needed to improve the outcome of these patients. While monoclonal antibody based therapies have been successful in some of the hematological malignancies, such approaches have had limited efficacy in the setting of myeloma. Thymoglobulin (polyclonal rabbit antithymocyte globulin, Genzyme) (Thymo) has been extensively evaluated in the setting of allogeneic blood and marrow transplantation and solid organ transplants. Given the polyclonal nature of this product, with antibodies against different B cell antigens, we evaluated the in vitro and in vivo activity of Thymo in myeloma. Methods: MM cell lines were cultured in RPMI 1640 containing 10% fetal bovine serum supplemented with L-Glutamine, penicillin, and streptomycin. The KAS-6/1 cell line was also supplemented with 1 ng/ml IL-6. Cytotoxicity following drug treatment was measured using the MTT viability assay. Apoptosis was measured by flow cytometry using Annexin V/PI in cell lines and Apo 2.7 in primary patient plasma cells. Shifts in expression of a variety of different B cell and plasma cell antigens were examined on several different myeloma cell lines following Thymo treatment in order to identify the potential antigenic targets. In vivo activity of thymo was evaluated in a SCID plasmacytoma model injected with RPMI myeloma cell lines. Results: rATG was cytotoxic in vitro to several MM cell lines (RPMI 8226, U266, OPM1, OPM2) including the IL-6 dependent cell line Kas6/1 with LC50 of around 1 mg/mL. Additionally, thymo was cytotoxic MM cell lines resistant to conventional agents such as doxorubicin (Dox40), melphalan (LR5) and dexamethasone (MM1R). Thymo induced apoptosis in MM cell lines and in patient derived primary myeloma cells. When tested in combination with other anti-myeloma agents an additive effect was seen with doxorubicin, PS341 and melphalan. Using competitive flow cytometry, we identified CD138, CD38, Cd45, CD126, CD49d (VLA4), as well as CD20 as antigens likely to be targeted by Thymo. Tumor bearing mice injected with Thymo at two different doses (5 mg/kg and 10 mg/kg for five days) had significantly delayed tumor growth compared to non-injected mice, and this translated into a better survival for these mice. Mice receiving 10 mg/kg dose had a slower tumor growth compared to 5 mg/kg dose (Figure). Conclusions: Thymoglobulin has promising in vitro and in vivo activity in the setting of myeloma. These studies will provide the rational for future clinical development of this agent in myeloma alone or in combination with other agents. Based on these results, we are in the process of initiating a clinical trial combining Thymo with Melphalan. Figure Figure


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e15002-e15002
Author(s):  
Jonathan M. Levitt ◽  
Keith S. Chan ◽  
Weiguo Jian ◽  
Seth P. Lerner ◽  
Guru Sonpavde

e15002 Background: Lenalidomide is approved for multiple myeloma and deletion 5q myelodysplastic syndromes (MDS) and demonstrates immune modulation, anti-angiogenic activity and direct anti-tumor cytotoxicity. A rationale can be made to evaluate the preclinical activity of lenalidomide in urothelial carcinoma (UC) based on the importance of these pathways. Methods: The in vitro anti-tumor activity of lenalidomide was evaluated in 4 human (5637, TCC-SUP, RT4, RT112) and 1 murine (MB49) cell line. Anti-proliferative activity activity (MTT assay), apoptosis (Annexin-FITC immunohistochemistry [IHC], flow cytometry) and cell viability by colony forming assay were measured. In vivo examination of activity of daily oral lenalidomide 10 mg/kg orally once daily or placebo for 4 weeks is examined in a syngeneic immunocompetent mouse model employing MB49-Luc25 cells injected subcutaneously in C57BL/6 mice. Murine tumors will be studied for anti-tumor activity. Results: In vitro activity of lenalidomide was detected at low ~1 µM concentrations (attainable in human subjects) against a non-invasive human UC cell line (RT4). Long-term cultures of RT4 cells for 10 days with daily repletion of lenalidomide reduced cell viability and colony forming ability to 75.6% of controls. Induction of apoptosis in RT4 was demonstrated by Annexin-FITC IHC and flow cytometry compared to control (30.11 vs. 14.74%). Invasive human UC cells and murine MB49 cells did not demonstrate apoptosis with lenalidomide exposure in vitro. Futher, lenalidomide did not inhibit overall tumor growth in the syngeneic immunocompetent murine model; immune activity and stem cell directed activity will be presented. Conclusions: Lenalidomide demonstrated preclinical anti-tumor activity against non-invasive human UC cells. Given its favorable toxicity profile compared to cytotoxic chemotherapy, clinical evaluation in patients with non-muscle-invasive bladder cancer and recurrence after BCG therapy may be warranted.


Sign in / Sign up

Export Citation Format

Share Document