scholarly journals The Emerging Role of Suppressors of Cytokine Signaling (SOCS) in the Development and Progression of Leukemia

Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4000
Author(s):  
Esra’a Keewan ◽  
Ksenia Matlawska-Wasowska

Cytokines are pleiotropic signaling molecules that execute an essential role in cell-to-cell communication through binding to cell surface receptors. Receptor binding activates intracellular signaling cascades in the target cell that bring about a wide range of cellular responses, including induction of cell proliferation, migration, differentiation, and apoptosis. The Janus kinase and transducers and activators of transcription (JAK/STAT) signaling pathways are activated upon cytokines and growth factors binding with their corresponding receptors. The SOCS family of proteins has emerged as a key regulator of cytokine signaling, and SOCS insufficiency leads to constitutive activation of JAK/STAT signaling and oncogenic transformation. Dysregulation of SOCS expression is linked to various solid tumors with invasive properties. However, the roles of SOCS in hematological malignancies, such as leukemia, are less clear. In this review, we discuss the recent advances pertaining to SOCS dysregulation in leukemia development and progression. We also highlight the roles of specific SOCS in immune cells within the tumor microenvironment and their possible involvement in anti-tumor immunity. Finally, we discuss the epigenetic, genetic, and post-transcriptional modifications of SOCS genes during tumorigenesis, with an emphasis on leukemia.

Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 899 ◽  
Author(s):  
Justin A. Roby ◽  
Katharina Esser-Nobis ◽  
Elyse C. Dewey-Verstelle ◽  
Marian R. Fairgrieve ◽  
Johannes Schwerk ◽  
...  

Pathogenic flaviviruses antagonize host cell Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling downstream of interferons α/β. Here, we show that flaviviruses inhibit JAK/STAT signaling induced by a wide range of cytokines beyond interferon, including interleukins. This broad inhibition was mapped to viral nonstructural protein 5 (NS5) binding to cellular heat shock protein 90 (HSP90), resulting in reduced Janus kinase–HSP90 interaction and thus destabilization of unchaperoned JAKs (and other kinase clients) of HSP90 during infection by Zika virus, West Nile virus, and Japanese encephalitis virus. Our studies implicate viral dysregulation of HSP90 and the JAK/STAT pathway as a critical determinant of cytokine signaling control during flavivirus infection.


2017 ◽  
Vol 114 (47) ◽  
pp. 12495-12500 ◽  
Author(s):  
Naga Sailaja Imjeti ◽  
Kerstin Menck ◽  
Antonio Luis Egea-Jimenez ◽  
Celine Lecointre ◽  
Frederique Lembo ◽  
...  

The cytoplasmic tyrosine kinase SRC controls cell growth, proliferation, adhesion, and motility. The current view is that SRC acts primarily downstream of cell-surface receptors to control intracellular signaling cascades. Here we reveal that SRC functions in cell-to-cell communication by controlling the biogenesis and the activity of exosomes. Exosomes are viral-like particles from endosomal origin that can reprogram recipient cells. By gain- and loss-of-function studies, we establish that SRC stimulates the secretion of exosomes having promigratory activity on endothelial cells and that syntenin is mandatory for SRC exosomal function. Mechanistically, SRC impacts on syndecan endocytosis and on syntenin–syndecan endosomal budding, upstream of ARF6 small GTPase and its effector phospholipase D2, directly phosphorylating the conserved juxtamembrane DEGSY motif of the syndecan cytosolic domain and syntenin tyrosine 46. Our study uncovers a function of SRC in cell–cell communication, supported by syntenin exosomes, which is likely to contribute to tumor–host interactions.


2019 ◽  
Vol 47 (5) ◽  
pp. 1543-1555 ◽  
Author(s):  
Maurizio Mongiat ◽  
Simone Buraschi ◽  
Eva Andreuzzi ◽  
Thomas Neill ◽  
Renato V. Iozzo

Abstract The extracellular matrix is a network of secreted macromolecules that provides a harmonious meshwork for the growth and homeostatic development of organisms. It conveys multiple signaling cascades affecting specific surface receptors that impact cell behavior. During cancer growth, this bioactive meshwork is remodeled and enriched in newly formed blood vessels, which provide nutrients and oxygen to the growing tumor cells. Remodeling of the tumor microenvironment leads to the formation of bioactive fragments that may have a distinct function from their parent molecules, and the balance among these factors directly influence cell viability and metastatic progression. Indeed, the matrix acts as a gatekeeper by regulating the access of cancer cells to nutrients. Here, we will critically evaluate the role of selected matrix constituents in regulating tumor angiogenesis and provide up-to-date information concerning their primary mechanisms of action.


2020 ◽  
Vol 20 (12) ◽  
pp. 1074-1092 ◽  
Author(s):  
Rammohan R.Y. Bheemanaboina

Phosphoinositide 3-kinases (PI3Ks) are a family of ubiquitously distributed lipid kinases that control a wide variety of intracellular signaling pathways. Over the years, PI3K has emerged as an attractive target for the development of novel pharmaceuticals to treat cancer and various other diseases. In the last five years, four of the PI3K inhibitors viz. Idelalisib, Copanlisib, Duvelisib, and Alpelisib were approved by the FDA for the treatment of different types of cancer and several other PI3K inhibitors are currently under active clinical development. So far clinical candidates are non-selective kinase inhibitors with various off-target liabilities due to cross-reactivities. Hence, there is a need for the discovery of isoform-selective inhibitors with improved efficacy and fewer side-effects. The development of isoform-selective inhibitors is essential to reveal the unique functions of each isoform and its corresponding therapeutic potential. Although the clinical effect and relative benefit of pan and isoformselective inhibition will ultimately be determined, with the development of drug resistance and the demand for next-generation inhibitors, it will continue to be of great significance to understand the potential mechanism of isoform-selectivity. Because of the important role of type I PI3K family members in various pathophysiological processes, isoform-selective PI3K inhibitors may ultimately have considerable efficacy in a wide range of human diseases. This review summarizes the progress of isoformselective PI3K inhibitors in preclinical and early clinical studies for anticancer and other various diseases.


Author(s):  
Hariharan Jayaraman ◽  
Nalinkanth V. Ghone ◽  
Ranjith Kumaran R ◽  
Himanshu Dashora

: Mesenchymal stem cells because of its high proliferation, differentiation, regenerative capacity, and ease of availability have been a popular choice in cytotherapy. Mesenchymal Stem Cells (MSCs) have a natural tendency to home in a tumor microenvironment and acts against it, owing to the similarity of the latter to an injured tissue environment. Several studies have confirmed the recruitment of MSCs by tumor through various cytokine signaling that brings about phenotypic changes to cancer cells, thereby promoting migration, invasion, and adhesion of cancer cells. The contrasting results on MSCs as a tool for cancer cytotherapy may be due to the complex cell to cell interaction in the tumor microenvironment, which involves various cell types such as cancer cells, immune cells, endothelial cells, and cancer stem cells. Cell to cell communication can be simple or complex and it is transmitted through various cytokines among multiple cell phenotypes, mechano-elasticity of the extra-cellular matrix surrounding the cancer cells, and hypoxic environments. In this article, the role of the extra-cellular matrix proteins and soluble mediators that acts as communicators between mesenchymal stem cells and cancer cells has been reviewed specifically for breast cancer, as it is the leading member of cancer malignancies. The comprehensive information may be beneficial in finding a new combinatorial cytotherapeutic strategy using MSCs by exploiting the cross-talk between mesenchymal stem cells and cancer cells for treating breast cancer.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 875
Author(s):  
Gerald Thiel ◽  
Tobias Schmidt ◽  
Oliver G. Rössler

Ca2+ ions function as second messengers regulating many intracellular events, including neurotransmitter release, exocytosis, muscle contraction, metabolism and gene transcription. Cells of a multicellular organism express a variety of cell-surface receptors and channels that trigger an increase of the intracellular Ca2+ concentration upon stimulation. The elevated Ca2+ concentration is not uniformly distributed within the cytoplasm but is organized in subcellular microdomains with high and low concentrations of Ca2+ at different locations in the cell. Ca2+ ions are stored and released by intracellular organelles that change the concentration and distribution of Ca2+ ions. A major function of the rise in intracellular Ca2+ is the change of the genetic expression pattern of the cell via the activation of Ca2+-responsive transcription factors. It has been proposed that Ca2+-responsive transcription factors are differently affected by a rise in cytoplasmic versus nuclear Ca2+. Moreover, it has been suggested that the mode of entry determines whether an influx of Ca2+ leads to the stimulation of gene transcription. A rise in cytoplasmic Ca2+ induces an intracellular signaling cascade, involving the activation of the Ca2+/calmodulin-dependent protein phosphatase calcineurin and various protein kinases (protein kinase C, extracellular signal-regulated protein kinase, Ca2+/calmodulin-dependent protein kinases). In this review article, we discuss the concept of gene regulation via elevated Ca2+ concentration in the cytoplasm and the nucleus, the role of Ca2+ entry and the role of enzymes as signal transducers. We give particular emphasis to the regulation of gene transcription by calcineurin, linking protein dephosphorylation with Ca2+ signaling and gene expression.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Daisuke Kase ◽  
Keiji Imoto

Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels were first reported in heart cells and are recently known to be involved in a variety of neural functions in healthy and diseased brains. HCN channels generate inward currents when the membrane potential is hyperpolarized. Voltage dependence of HCN channels is regulated by intracellular signaling cascades, which contain cyclic AMP, PIP2, and TRIP8b. In addition, voltage-gated potassium channels have a strong influence on HCN channel activity. Because of these funny features, HCN channel currents, previously called funny currents, can have a wide range of functions that are determined by a delicate balance of modulatory factors. These multifaceted features also make it difficult to predict and elucidate the functional role of HCN channels in actual neurons. In this paper, we focus on the impacts of HCN channels on neural activity. The functions of HCN channels reported previously will be summarized, and their mechanisms will be explained by using numerical simulation of simplified model neurons.


2019 ◽  
Vol 4 (3) ◽  
pp. 7-17
Author(s):  
A. O. Shpakov ◽  
K. V. Derkach

Adipokine apelin through the apelin receptors activates a wide range of signaling cascades in the target cells and controls their growth, differentiation, apoptosis, and energy metabolism. In the recent years, the evidence has been obtained that all components of the hypothalamic-pituitary-gonad axis, in which apelin and its receptor are expressed, are targets of apelin. In the hypothalamus, apelin modulates the activity of the melanocortin and ghrelin systems and indirectly affects the production of gonadoliberin. In the ovaries, it controls the growth and maturation of the follicles, stimulates the angiogenesis, and affects the basal and stimulated by the other factors steroidogenic activity in follicular cells. The changes in the apelin signaling system are closely associated with dysfunctions of the female reproductive system, such as polycystic ovary syndrome, endometriosis, and cancer. Information on the regulation of the male reproductive system by apelin is limited to animal studies showing the effect of apelin on the hypothalamic components of the gonad axis. The participation of apelin in the regulation of the reproductive system opens up the broad opportunities for the development of new approaches for the correction of abnormalities in this system and for the treatment of infertility.


2019 ◽  
Vol 21 (24) ◽  
pp. 12905-12915 ◽  
Author(s):  
Yaru Wei ◽  
Zhiyang Zhang ◽  
Nai She ◽  
Xin Chen ◽  
Yuan Zhao ◽  
...  

Suppressors of cytokine signaling (SOCS) act as negative feedback regulators of the Janus kinase/signal transducer (JAK–STAT) signaling pathway by inhibiting the activity of JAK kinase.


2020 ◽  
Vol 21 (23) ◽  
pp. 9004
Author(s):  
Alexandra Damerau ◽  
Timo Gaber ◽  
Sarah Ohrndorf ◽  
Paula Hoff

The Janus kinase (JAK) signal transducer and activator of transcription (STAT) signaling pathway serves as an important downstream mediator for a variety of cytokines, hormones, and growth factors. Emerging evidence suggests JAK/STAT signaling pathway plays an important role in bone development, metabolism, and healing. In this light, pro-inflammatory cytokines are now clearly implicated in these processes as they can perturb normal bone remodeling through their action on osteoclasts and osteoblasts at both intra- and extra-articular skeletal sites. Here, we summarize the role of JAK/STAT pathway on development, homeostasis, and regeneration based on skeletal phenotype of individual JAK and STAT gene knockout models and selective inhibition of components of the JAK/STAT signaling including influences of JAK inhibition in osteoclasts, osteoblasts, and osteocytes.


Sign in / Sign up

Export Citation Format

Share Document