scholarly journals Loss of EZH2-like or SU(VAR)3–9-like proteins causes simultaneous perturbations in H3K27 and H3K9 tri-methylation and associated developmental defects in the fungus Podospora anserina

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
F. Carlier ◽  
M. Li ◽  
L. Maroc ◽  
R. Debuchy ◽  
C. Souaid ◽  
...  

Abstract Background Selective gene silencing is key to development. It is generally accepted that H3K27me3-enriched heterochromatin maintains transcriptional repression established during early development and regulates cell fate. Conversely, H3K9me3-enriched heterochromatin prevents differentiation but constitutes protection against transposable elements. We exploited the fungus Podospora anserina, a valuable alternative to higher eukaryote models, to question the biological relevance and functional interplay of these two distinct heterochromatin conformations. Results We established genome-wide patterns of H3K27me3 and H3K9me3 modifications, and found these marks mutually exclusive within gene-rich regions but not within repeats. We generated the corresponding histone methyltransferase null mutants and showed an interdependence of H3K9me3 and H3K27me3 marks. Indeed, removal of the PaKmt6 EZH2-like enzyme resulted not only in loss of H3K27me3 but also in significant H3K9me3 reduction. Similarly, removal of PaKmt1 SU(VAR)3–9-like enzyme caused loss of H3K9me3 and substantial decrease of H3K27me3. Removal of the H3K9me binding protein PaHP1 provided further support to the notion that each type of heterochromatin requires the presence of the other. We also established that P. anserina developmental programs require H3K27me3-mediated silencing, since loss of the PaKmt6 EZH2-like enzyme caused severe defects in most aspects of the life cycle including growth, differentiation processes and sexual reproduction, whereas loss of the PaKmt1 SU(VAR)3–9-like enzyme resulted only in marginal defects, similar to loss of PaHP1. Conclusions Our findings support a conserved function of the PRC2 complex in fungal development. However, we uncovered an intriguing evolutionary fluidity in the repressive histone deposition machinery, which challenges canonical definitions of constitutive and facultative heterochromatin.

2020 ◽  
Author(s):  
F Carlier ◽  
R Debuchy ◽  
L Maroc ◽  
C Souaid ◽  
D Noordermeer ◽  
...  

AbstractSelective gene silencing is key to development. The H3K27me3 enriched heterochromatin maintains transcription repression established during early development and regulates cell fate. Conversely, H3K9me3 enriched heterochromatin prevents differentiation but constitutes a permanent protection against transposable element. We exploited the fungus Podospora anserina, a valuable alternative to higher eukaryote models to question the biological relevance and interplay of these two distinct heterochromatin conformations. We found that H3K27me3 and H3K9me3 modifications are mutually exclusive within gene-rich regions but not within repeats. Lack of PaKmt6 EZH2-like enzyme resulted in loss of H3K27me3 and in significant H3K9me3 reduction, whereas lack of PaKmt1 SU(VAR)3-9-like enzyme caused loss of H3K9me3 only. We established that P. anserina developmental programs require H3K27me3 mediated silencing unlike most fungi studied to date. Our findings provide new insight into roles of these histone marks and into the relationship between chromatin modifications and development.


Author(s):  
Ryan M Patrick ◽  
Xing-Qi Huang ◽  
Natalia Dudareva ◽  
Ying Li

Abstract Biosynthesis of secondary metabolites relies on primary metabolic pathways to provide precursors, energy, and cofactors, thus requiring coordinated regulation of primary and secondary metabolic networks. However, to date, it remains largely unknown how this coordination is achieved. Using Petunia hybrida flowers, which emit high levels of phenylpropanoid/benzenoid volatile organic compounds (VOCs), we uncovered genome-wide dynamic deposition of histone H3 lysine 9 acetylation (H3K9ac) during anthesis as an underlying mechanism to coordinate primary and secondary metabolic networks. The observed epigenome reprogramming is accompanied by transcriptional activation at gene loci involved in primary metabolic pathways that provide precursor phenylalanine, as well as secondary metabolic pathways to produce volatile compounds. We also observed transcriptional repression among genes involved in alternative phenylpropanoid branches that compete for metabolic precursors. We show that GNAT family histone acetyltransferase(s) (HATs) are required for the expression of genes involved in VOC biosynthesis and emission, by using chemical inhibitors of HATs, and by knocking down a specific HAT gene, ELP3, through transient RNAi. Together, our study supports that regulatory mechanisms at chromatin level may play an essential role in activating primary and secondary metabolic pathways to regulate VOC synthesis in petunia flowers.


2018 ◽  
Vol 116 ◽  
pp. 1-13 ◽  
Author(s):  
Ning Xie ◽  
Gwenaël Ruprich-Robert ◽  
Philippe Silar ◽  
Eric Herbert ◽  
Roselyne Ferrari ◽  
...  

2012 ◽  
Vol 210 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Florian H. Heidel ◽  
Lars Bullinger ◽  
Patricia Arreba-Tutusaus ◽  
Zhu Wang ◽  
Julia Gaebel ◽  
...  

A unique characteristic of hematopoietic stem cells (HSCs) is the ability to self-renew. Several genes and signaling pathways control the fine balance between self-renewal and differentiation in HSCs and potentially also in leukemia stem cells. Recently, studies have shed light on developmental molecules and evolutionarily conserved signals as regulators of stem cells in hematopoiesis and leukemia. In this study, we provide evidence that the cell fate determinant Llgl1 (lethal giant larvae homolog 1) plays an important role in regulation of HSCs. Loss of Llgl1 leads to an increase in HSC numbers that show increased repopulation capacity and competitive advantage after transplantation. This advantage increases upon serial transplantation or when stress is applied to HSCs. Llgl1−/− HSCs show increased cycling but neither exhaust nor induce leukemia in recipient mice. Llgl1 inactivation is associated with transcriptional repression of transcription factors such as KLF4 (Krüppel-like factor 4) and EGR1 (early-growth-response 1) that are known inhibitors of HSC self-renewal. Decreased Llgl1 expression in human acute myeloid leukemia (AML) cells is associated with inferior patient survival. Thus, inactivation of Llgl1 enhances HSC self-renewal and fitness and is associated with unfavorable outcome in human AML.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Anna Biernacka ◽  
Yingjie Zhu ◽  
Magdalena Skrzypczak ◽  
Romain Forey ◽  
Benjamin Pardo ◽  
...  

AbstractMaintenance of genome stability is a key issue for cell fate that could be compromised by chromosome deletions and translocations caused by DNA double-strand breaks (DSBs). Thus development of precise and sensitive tools for DSBs labeling is of great importance for understanding mechanisms of DSB formation, their sensing and repair. Until now there has been no high resolution and specific DSB detection technique that would be applicable to any cells regardless of their size. Here, we present i-BLESS, a universal method for direct genome-wide DNA double-strand break labeling in cells immobilized in agarose beads. i-BLESS has three key advantages: it is the only unbiased method applicable to yeast, achieves a sensitivity of one break at a given position in 100,000 cells, and eliminates background noise while still allowing for fixation of samples. The method allows detection of ultra-rare breaks such as those forming spontaneously at G-quadruplexes.


1996 ◽  
Vol 16 (3) ◽  
pp. 952-959 ◽  
Author(s):  
J J Hsieh ◽  
T Henkel ◽  
P Salmon ◽  
E Robey ◽  
M G Peterson ◽  
...  

The Notch/Lin-12/Glp-1 receptor family participates in cell-cell signaling events that influence cell fate decisions. Although several Notch homologs and receptor ligands have been identified, the nuclear events involved in this pathway remain incompletely understood. A truncated form of Notch, consisting only of the intracellular domain (NotchIC), localizes to the nucleus and functions as an activated receptor. Using both an in vitro binding assay and a cotransfection assay based on the two-hybrid principle, we show that mammalian NotchIC interacts with the transcriptional repressor CBF1, which is the human homolog of Drosophila Suppressor of Hairless. Cotransfection assays using segments of mouse NotchIC and CBF1 demonstrated that the N-terminal 114-amino-acid region of mouse NotchIC contains the CBF1 interactive domain and that the cdc10/ankyrin repeats are not essential for this interaction. This result was confirmed in immunoprecipation assays in which the N-terminal 114-amino-acid segment of NotchIC, but not the ankyrin repeat region, coprecipitated with CBF1. Mouse NotchIC itself is targeted to the transcriptional repression domain (aa179 to 361) of CBF1. Furthermore, transfection assays in which mouse NotchIC was targeted through Gal4-CBF1 or through endogenous cellular CBF1 indicated that NotchIC transactivates gene expression via CBF1 tethering to DNA. Transactivation by NotchIC occurs partially through abolition of CBF1-mediated repession. This same mechanism is used by Epstein-Barr virus EBNA2. Thus, mimicry of Notch signal transduction is involved in Epstein-Barr virus-driven immortalization.


2010 ◽  
Vol 30 (11) ◽  
pp. 2837-2848 ◽  
Author(s):  
Vanessa Gobert ◽  
Dani Osman ◽  
Stéphanie Bras ◽  
Benoit Augé ◽  
Muriel Boube ◽  
...  

ABSTRACT Transcription factors of the RUNX and GATA families play key roles in the control of cell fate choice and differentiation, notably in the hematopoietic system. During Drosophila hematopoiesis, the RUNX factor Lozenge and the GATA factor Serpent cooperate to induce crystal cell differentiation. We used Serpent/Lozenge-activated transcription as a paradigm to identify modulators of GATA/RUNX activity by a genome-wide RNA interference screen in cultured Drosophila blood cells. Among the 129 factors identified, several belong to the Mediator complex. Mediator is organized in three modules plus a regulatory “CDK8 module,” composed of Med12, Med13, CycC, and Cdk8, which has long been thought to behave as a single functional entity. Interestingly, our data demonstrate that Med12 and Med13 but not CycC or Cdk8 are essential for Serpent/Lozenge-induced transactivation in cell culture. Furthermore, our in vivo analysis of crystal cell development show that, while the four CDK8 module subunits control the emergence and the proliferation of this lineage, only Med12 and Med13 regulate its differentiation. We thus propose that Med12/Med13 acts as a coactivator for Serpent/Lozenge during crystal cell differentiation independently of CycC/Cdk8. More generally, we suggest that the set of conserved factors identified herein may regulate GATA/RUNX activity in mammals.


Stem Cells ◽  
2020 ◽  
Vol 38 (6) ◽  
pp. 741-755
Author(s):  
Jiejia Xu ◽  
Chikai Zhou ◽  
Kylie S. Foo ◽  
Ran Yang ◽  
Yao Xiao ◽  
...  

2016 ◽  
Vol 56 (3) ◽  
pp. R73-R97 ◽  
Author(s):  
Inna Astapova

Thyroid hormone (TH) controls a wide range of physiological processes through TH receptor (TR) isoforms. Classically, TRs are proposed to function as tri-iodothyronine (T3)-dependent transcription factors: on positively regulated target genes, unliganded TRs mediate transcriptional repression through recruitment of co-repressor complexes, while T3binding leads to dismissal of co-repressors and recruitment of co-activators to activate transcription. Co-repressors and co-activators were proposed to play opposite roles in the regulation of negative T3target genes and hypothalamic–pituitary–thyroid axis, but exact mechanisms of the negative regulation by TH have remained elusive. Important insights into the roles of co-repressors and co-activators in different physiological processes have been obtained using animal models with disrupted co-regulator function. At the same time, recent studies interrogating genome-wide TR binding have generated compelling new data regarding effects of T3, local chromatin structure, and specific response element configuration on TR recruitment and function leading to the proposal of new models of transcriptional regulation by TRs. This review discusses data obtained in various mouse models with manipulated function of nuclear receptor co-repressor (NCoR or NCOR1) and silencing mediator of retinoic acid receptor and thyroid hormone receptor (SMRT or NCOR2), and family of steroid receptor co-activators (SRCs also known as NCOAs) in the context of TH action, as well as insights into the function of co-regulators that may emerge from the genome-wide TR recruitment analysis.


Cell ◽  
2010 ◽  
Vol 140 (1) ◽  
pp. 148-160 ◽  
Author(s):  
J. Andrew Pospisilik ◽  
Daniel Schramek ◽  
Harald Schnidar ◽  
Shane J.F. Cronin ◽  
Nadine T. Nehme ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document