Corrosion Behavior of High-Strength Low-Alloy Steel in High-Temperature Water with Zinc and Aluminum Simultaneous Injection

CORROSION ◽  
10.5006/3545 ◽  
2020 ◽  
Vol 76 (10) ◽  
pp. 918-929
Author(s):  
Shenghan Zhang ◽  
Chenhao Sun ◽  
Yu Tan

Oxide films were formed on A508-3 steel in simulated pressurized water reactor (PWR) primary water at the temperature of 561 ± 1 K for 168 h with zinc and/or aluminum injection. Corrosion behaviors of oxide films were analyzed by electrochemical polarization, electrochemical impedance spectroscopy, Mott-Schottky plots, photocurrent measurement, scanning electronic microscopy, and x-ray diffraction. The results showed that zinc and aluminum simultaneous injection technology decreased the corrosion current density, increased the impedance value, made the oxide film more compact, and affected the semiconductor properties of the oxide film. The increase in zinc concentration improved the corrosion resistance to some extent. ZnAl2O4 phase, with extremely low solubility and high stability, had been detected in the oxide film; this substance changed the composition of the oxide film and affected the corrosion behavior of A508-3 steel.

2007 ◽  
Vol 26-28 ◽  
pp. 937-940 ◽  
Author(s):  
Dong Jin Kim ◽  
Hyuk Chul Kwon ◽  
Seong Sik Hwang ◽  
Hong Pyo Kim

Alloy 600 is used as a material for a steam generator tubing in pressurized water reactors(PWR) due to its high corrosion resistance under a PWR environment. In spite of its corrosion resistance, a stress corrosion cracking(SCC) has occurred on the primary side as well as the secondary side of a tubing. It is known that a SCC is related to the electrochemical behaviors of an anodic dissolution and a passivation of a bare surface of metals and alloys. Therefore in the present work, the passive oxide films on Alloy 600 have been investigated as a function of the solution temperature by using a potentiodynamic polarization, electrochemical impedance spectroscopy and a TEM, equipped with EDS. Moreover the semiconductive property was evaluated by using the Mott-Schottky relation. It was found that the passivity depends on the chemical composition and the densification of the oxide film rather than the oxide thickness. As the solution temperature of 0.5M H3BO3 increased, the thickness of the passive film increased but the oxide resistance of the passive film was decreased, indicating that the measured current in the passive region of the potentiodynamic curve is closely related to the stability of the passive film rather than the oxide thickness. It was found that the oxide films were composed of an outer oxide layer with a lower resistance and an inner oxide layer with a relatively higher resistance. From the Mott-Schottky relation, the oxide formed at 300oC showed a p-type semiconductor property unlike the n-type oxide films up to 250oC.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
A. Torres-Islas ◽  
C. Carachure ◽  
S. Serna ◽  
B. Campillo ◽  
G. Rosas

The corrosion behavior of the Fe40Al60nanostructured intermetallic composition was studied using electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LPR) techniques with an innovative electrochemical cell arrangement. The Fe40Al60(% at) intermetallic composition was obtained by mechanical alloying using elemental powders of Fe (99.99%) and Al (99.99%). All electrochemical testing was carried out in Fe40Al60particles that were in water with different pH values. Temperature and test time were also varied. The experimental data was analyzed as an indicator of the monitoring of the particle corrosion current densityicorr. Different oxide types that were formed at surface particle were found. These oxides promote two types of surface corrosion mechanisms: (i) diffusion and (ii) charge transfer mechanisms, which are a function oficorrbehavior of the solution, pH, temperature, and test time. The intermetallic was characterized before and after each test by transmission electron microscopy. Furthermore, the results show that at the surface particles uniform corrosion takes place. These results confirm that it is possible to sense the nanoparticle corrosion behavior by EIS and LPR conventional electrochemical techniques.


2019 ◽  
Vol 66 (6) ◽  
pp. 819-826
Author(s):  
Khashayar Tabi ◽  
Mansour Farzam ◽  
Davood Zaarei

Purpose Potassium silicate sealer was applied on solvent-cleaned, acid-pickled, dacromet-coated steel to improve its corrosion resistance. The purpose of this paper is to study the corrosion behavior of dacromet-coated steel. Design/methodology/approach Potassium silicate sealer was applied on solvent-cleaned, acid-pickled, dacromet-coated steel to improve its corrosion resistance. Electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and salt spray were carried out. SEM was used to study the morphological appearance of the surface. Findings The EIS behavior indicated that solvent-cleaned dacromet-coated steel sealed with potassium silicate showed that the corrosion current density was 2.664E − 5 A.cm2 which was reduced to 8.752E − 6 A.cm2 and the corrosion rate, which was 2.264E − 2 mm.year−1, was reduced to 7.438E − 3 mm.year−1 in NaCl 3.5 wt.per cent. EIS was used in NaCl 3.5 wt.%, and the Bode plot characteristics showed that the corrosion protection of solvent-cleaned, dacromet-coated steel was enhanced when sealed with potassium silicate. The EDS results of salt-sprayed, solvent-cleaned samples after 10 days indicated that the main corrosion products are composed of SiO2, ZnO and Al2O3. Research limitations/implications The detection of Li element in EDS was not possible because of the device limitation. Originality/value The current paper provides new information about the sealing properties of potassium silicate and its effects on the corrosion resistance of dacromet coating, which is widely used in many industries such as the automobile industry.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 950 ◽  
Author(s):  
Zequn Yu ◽  
Yuecheng Dong ◽  
Xin Li ◽  
Jingzhe Niu ◽  
Igor Alexandrov ◽  
...  

The aim of this study was to investigate the corrosion resistance of ultrafine-grained (UFG) Ti-6Al-7Nb fabricated by equal channel angular pressing (ECAP) and coarse-grained (CG) Ti- 6Al- 7Nb. The microstructure of each specimen was investigated by the electron backscattered diffraction (EBSD) method. The corrosion behavior of each specimen was determined by electrochemical measurement in Ringer’s solution. The surface corroded morphologies and oxide film formed on Ti-6Al-7Nb alloy after electrochemical measurement were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). EBSD investigation shows that the grain size of UFG Ti-6Al-7Nb decreased to ~0.4 µm, accompanied by low angle grain boundaries (LAGBs) accounting for 39%. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) results indicated that UFG Ti-6Al-7Nb alloy possessed a better corrosion resistance. The surface corroded morphologies revealed many small and shallow corrosion pits, which can be attributed to the good compactness of the oxide film and a rapid self- repairing ability of the UFG Ti-6Al-7Nb alloy.


2016 ◽  
Vol 835 ◽  
pp. 131-135 ◽  
Author(s):  
Francis Mulimbayan ◽  
Manolo G. Mena

Stainless steel (SS) is one of the most commonly used metallic food contact materials. It may be classified based on its microstructure whether ferritic, austenitic, martensitic, duplex or precipitation hardened. Austenitic SS, among mentioned grades, has the largest contribution to market due to its numerous industrial and domestic applications. In this study, the corrosion behavior of AISI 202 SS – a cheaper grade of stainless steel, in three different solution temperatures of citric acid was investigated using different electrochemical techniques such as open-circuit potential (OCP) measurements, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results were compared to that obtained from conventional AISI 304 SS. OCP, polarization and impedance measurements agreed that AISI 202 SS has comparable resistance to that of AISI 304 SS in citric acid at ambient temperature and at 50 °C. At 70 °C, results of OCP measurements suggest that AISI 304 SS exhibited greater performance as indicated by more positive OCP values in the designated solution. EIS results indicate that the two alloys have identical corrosion resistance even at 70 °C as indicated by their comparable polarization resistance (Rp). The corrosion mechanism in both alloys is charge-transfer controlled as indicated by depressed semi-circular appearance of the generated Nyquist plots. The values of corrosion current densities (icorr) extracted from polarization curves indicate that the initial corrosion rates were higher in AISI 304 than AISI 202 SS suggesting that formation of more protective film may have occurred on the former alloy.


1992 ◽  
Vol 271 ◽  
Author(s):  
Yoshiyuki Yasutomi ◽  
Masahisa Sobue ◽  
Jiro Kondo

ABSTRACTKnowing the nitridation mechanism of Si is important to obtain near-net-shape high strength reaction bonded ceramics. In this report, comparison of nitridation mechanism of small spherical Si powder produced by plasma arc method and large faceted Si powder, is discussed on the basis of microstructural analyses by SEM and TEM. From the analyses, nitrogen diffuses through the oxide film of Si powder and forms Si3N4 under the oxide films during the initial stage of sintering. At higher temperature, the oxide film transform into fine Si3N4 grains when heated to the 1350°C. The Si3N4 has morphology of hollow shell and a size, which corresponds to that of the original Si particles.


2011 ◽  
Vol 299-300 ◽  
pp. 427-431
Author(s):  
Yun Li ◽  
Shi Zhi Shang ◽  
Ming Cheng ◽  
Liang Xu ◽  
Shi Hong Zhang

The corrosion behavior of Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy in 3.5% NaCl solution was investigated by using potentiodynamic polarization experiments and electrochemical impedance spectroscopy (EIS). The results show that Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy has the better corrosion resistance than its corresponding crystal alloy. During the bath in the 3.5% NaCl solution at 25°C, Zr53.5Cu26.5Ni5Al12Ag3 alloy has the lower corrosion current density than the corresponding crystal alloy. After 100h, the corrosion current densities of Zr53.5Cu26.5Ni5Al12Ag3 and the corresponding crystal alloy are 3.8415×10-8A/cm2 and 5.2827×10-7A/cm2, respectively. The results of EIS test indicate that Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy has the excellent corrosion resistance because passive film with stable structure formed on the surface in 3.5% NaCl solution. With an increase in the immersion time, the passive film becomes thicker. It leads to impedance resistance and corrosion resistance decrease. The surface of Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy in 3.5% NaCl solution for 100h was analyzed by SEM and EDS. The results show that the corrosive pitting can be found at both the amorphous alloy and the corresponding crystal alloy. However, the amorphous alloy has the better corrosive pitting resistance than the crystal one because the corrosion products formed by selective dissolving of Zr and Al elements. Moreover, the addition of Ag element helps to improve the corrosion resistance of the amorphous alloy greatly.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3466 ◽  
Author(s):  
Okazaki

The oxide film resistance (RP) and capacitance (CCPE) diagrams of implantable metals (commercially pure Ti, four types of Ti alloys, Co–28Cr–6Mo alloy, and stainless steel) were investigated by electrochemical impedance spectroscopy (EIS). The thin oxide film formed on each implantable metal surface was observed in situ by field-emission transmission electron microscopy (FE-TEM). The Ti–15Zr–4Nb–1Ta and Ti–15Zr–4Nb–4Ta alloys had higher oxygen concentrations in the oxide films than the Ti–6Al–4V alloy. The thickness (d) of the TiO2 oxide films increased from approximately 3.5 to 7 nm with increasing anodic polarization potential from the open-circuit potential to a maximum of 0.5 V vs. a saturated calomel electrode (SCE) in 0.9% NaCl and Eagle’s minimum essential medium. RP for the Ti–15Zr–4Nb–1Ta and Ti–15Zr–4Nb–4Ta alloys was proportional to d obtained by FE-TEM. CCPE was proportional to 1/d. RP tended to decrease with increasing CCPE. RP was large (maximum: 13 MΩ·cm2) and CCPE was small (minimum: 12 μF·cm−2·sn−1, n = 0.94) for the Ti–15Zr–4Nb–(0 to 4)Ta alloys. The relative dielectric constant (εr) and resistivity (kOX) of the oxide films formed on these alloys were 136 and 2.4 × 106–1.8 × 107 (MΩ·cm), respectively. The Ta-free Ti–15Zr–4Nb alloy is expected to be employed as an implantable material for long-term use.


Sign in / Sign up

Export Citation Format

Share Document