scholarly journals Effect of calcium on relieving berry cracking in grape (Vitis vinifera L.) ‘Xiangfei’

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9896 ◽  
Author(s):  
Jun Yu ◽  
Mingtao Zhu ◽  
Miao Bai ◽  
Yanshuai Xu ◽  
Shaogang Fan ◽  
...  

Fruit cracking is a physiological disorder in many plant species that leads to severe economic losses. The aim of this study was to investigate the effect of calcium on fruit cracking and explore the underlying mechanisms. We studied the effect of exogenous calcium on grape berry cracking, calcium absorbance and distribution, and cell wall metabolism in the cracking-susceptible cultivar ‘Xiangfei’. Calcium significantly reduced the frequency of fruit cracking, increased the break force of the berry skin, and stimulated storage of calcium. In addition, calcium increased the content of protopectin and inhibited the increase in content of water-soluble pectin, by regulating the transcription and activities of enzymes associated with cell wall metabolism. Taken together, the results indicated that dipping grape berries in calcium solution is effective in preventing fruit cracking by stimulating calcium uptake, inhibiting cell wall disassembly, and promoting cell wall strengthening.

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 105
Author(s):  
Lu Hou ◽  
Meng Li ◽  
Chenxing Zhang ◽  
Ningwei Liu ◽  
Xinru Liu ◽  
...  

Fruit cracking is a common physiological disorder in many fruit species. Jujube (Ziziphus jujuba Mill.) is an economically valuable fruit in which fruit cracking seriously affects fruit yield and quality and causes significant economic losses. To elucidate cracking-related molecular mechanisms, the cracking-susceptible cultivars ‘Cuizaohong’ and ‘Jinsixiaozao’ and the cracking-resistant cultivar ‘Muzao’ were selected, and comparative transcriptome analyses of cracking and non-cracking ‘Cuizaohong’ (CC and NC), cracking and non-cracking ‘Jinsixiaozao’ (CJ and NJ), and non-cracking ‘Muzao’ (NM) were conducted. A total of 131 differentially expressed genes (DEGs) were common to the CC vs. NC and CJ vs. NJ comparisons. To avoid passive processes after fruit cracking, we also mainly focused on the 225 gradually downregulated DEGs in the CJ, NJ, and NM samples. The functional annotation of the candidate DEGs revealed that 61 genes related to calcium, the cell wall, the cuticle structure, hormone metabolism, starch/sucrose metabolism, transcription factors, and water transport were highly expressed in cracking fruits. We propose that expression-level changes in these genes might increase the turgor pressure and weaken mechanical properties, ultimately leading to jujube fruit cracking. These results may serve as a rich genetic resource for future investigations on fruit cracking mechanisms in jujube and in other fruit species.


OENO One ◽  
2008 ◽  
Vol 42 (1) ◽  
pp. 1 ◽  
Author(s):  
David Glissant ◽  
Fabienne Dédaldéchamp ◽  
Serge Delrot

<p style="text-align: justify;"><strong>Aims</strong>: The aim of this paper was to use recent transcriptomic tools available for grape in order to understand berry softening.</p><p style="text-align: justify;"><strong>Methods and results</strong>: A microarray bearing specific 50 mer oligonucleotide for 3,200 genes was used to study gene expression along 8 stages of berry development in Chardonnay and Shiraz berries. Transcripts corresponding to aquaporin genes and to genes involved in cell wall metabolism were studied in detail and ranked according to their pattern of expression.</p><p style="text-align: justify;"><strong>Conclusion</strong>: Several structural and regulatory genes whose expression pattern correlated with the late phases of ripening were identified. Significance and impact of study: This study provides a preliminary molecular basis to identify molecular markers of berry ripening.</p>


HortScience ◽  
2012 ◽  
Vol 47 (10) ◽  
pp. 1466-1471 ◽  
Author(s):  
Zhengke Zhang ◽  
Zhaoyin Gao ◽  
Min Li ◽  
Meijiao Hu ◽  
Hui Gao ◽  
...  

‘Tainong 1’ mango fruit were treated with hot water for 10 minutes at 55 °C and then stored at 5 °C for 3 weeks. After removal from low-temperature storage, the effects of hot water treatment (HWT) on chilling injury (CI), ripening and cell wall metabolism during storage (20 °C, 5 days) were investigated. HWT reduced the CI development of the fruit as manifested by firmer texture, external browning, and fungal lesions. A more rapid ripening process, as indicated by changes in firmness, respiration rate, and ethylene production, occurred in heated fruit after exposure to low temperature as compared with non-heated fruit. At the same time, the cell wall components in heated fruit contained more water-soluble pectin and less 1,2-cyclohexylenedinitrilotetraactic acid (CDTA)-soluble pectin than those in non-heated fruit. HWT also maintained higher polygalacturonase [enzyme classification (EC) 3.2.1.15] and β-galactosidase (EC 3.2.1.23) activities as well as lower pectin methylesterase (EC 3.1.1.11) activity. In general, the changes of ripening and cell wall metabolism parameters in the heated fruit after low-temperature storage exhibited a comparable pattern to that of non-cold-stored fruit.


2021 ◽  
Vol 49 (2) ◽  
pp. 12062
Author(s):  
Felipe M. PONTES ◽  
José D. A. SARMENTO ◽  
Naama J. De A. MELO ◽  
Erika V. De MEDEIROS ◽  
Patrícia L. D. MORAIS ◽  
...  

The objective of the present study was to evaluate the physical and chemical changes, pectinases activity, and cell wall pectin in melon varieties Acidulus (access 16), Momordica (access 2), Inodorus (cv. ‘Iracema’) and Cantalupensis (cv. ‘Olympic’), in the relation of ripening degree at harvest. Melon fruits were planted and evaluated with different ripening degree at harvest, from 15 to 35 days after anthesis (DAA). The fruits, arranged in a completely randomized design, had been evaluated on the harvest days to physical and chemical characteristics. We evaluate pectin methylesterase, polygalacturonase, beta-galactosidase, and pectin contents (water-soluble, chelate soluble, and sodium carbonate soluble). The ideal harvest for each melon was, 35 days after anthesis for cv ‘Iracema’, 30 days after anthesis for cv. ‘Olympic’, 30 days after anthesis for access 16, and 20 days after anthesis for access 2. High pulp firmness of access 16 is associated with the high levels of sodium carbonate soluble pectin and low levels of polygalacturonase and beta-galactosidase activity. Momordica melon fruit cracking is related to the high levels of pectinases activity, as well as pectin degradation.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1045
Author(s):  
Yuying Wang ◽  
Linhui Guo ◽  
Xueqing Zhao ◽  
Yujie Zhao ◽  
Zhaoxiang Hao ◽  
...  

Fruit cracking is a physiological disease that occurs during fruit development, which limits the quality and marketability of the fruit and causes great economic losses. Fruit cracking is affected by physiological, genetic and environmental factors. In this paper, the mechanism of fruit cracking was elaborated from cutin and cell wall, especially the gene families related to cell wall metabolism, including the polygalacturonase (PG) gene family, xylologlucan endotransglucosylase/hydrolase (XTH) gene family and expansin gene family. In addition, due to the advancement of high-throughput sequencing technology, an increasing number of horticultural plants have completed genome sequencing. This paper expounds the application of omics, including transcriptome, proteome, metabolomics and integrative omics in fruit cracking. The measures to reduce fruit cracking include using plastic rain covers and bagging, and spraying mineral and plant growth regulators. In this paper, the mechanisms of fruit cracking are reviewed at the molecular level, and the problems needing to be solved in fruit cracking research are put forward.


2020 ◽  
Author(s):  
KJ Nunan ◽  
Ian Sims ◽  
A Bacic ◽  
SP Robinson ◽  
GB Fincher

Cell walls have been isolated from the mesocarp of mature grape (Vitis vinifera L.) berries. Tissue homogenates were suspended in 80% (v/v) ethanol to minimise the loss of water-soluble wall components and wet-sieved on nylon mesh to remove cytoplasmic material. The cell wall fragments retained on the sieve were subsequently treated with buffered phenol at pH 7.0, to inactivate any wall-bound enzymes and to dislodge small amounts of cytoplasmic proteins that adhered to the walls. Finally, the wall preparation was washed with chloroform/methanol (1:1, v/v) to remove lipids and dried by solvent exchange. Scanning electron microscopy showed that the wall preparation was essentially free of vascular tissue and adventitious protein of cytoplasmic origin. Compositional analysis showed that the walls consisted of approximately 90% by weight of polysaccharide and less than 10% protein. The protein component of the walls was shown to be rich in arginine and hydroxyproline residues. Cellulose and polygalacturonans were the major constituents, and each accounted for 30-40% by weight of the polysaccharide component of the walls. Substantial varietal differences were observed in the relative abundance of these two polysaccharides. Xyloglucans constituted approximately 10% of the polysaccharide fraction and the remainder was made up of smaller amounts of mannans, heteroxylans, arabinans and galactans.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 490
Author(s):  
Martin Sák ◽  
Ivana Dokupilová ◽  
Šarlota Kaňuková ◽  
Michaela Mrkvová ◽  
Daniel Mihálik ◽  
...  

The in vitro cell cultures derived from the grapevine (Vitis vinifera L.) have been used for the production of stilbenes treated with different biotic and abiotic elicitors. The red-grape cultivar Váh has been elicited by natural cellulose from Trichoderma viride, the cell wall homogenate from Fusarium oxysporum and synthetic jasmonates. The sodium-orthovanadate, known as an inhibitor of hypersensitive necrotic response in treated plant cells able to enhance production and release of secondary metabolite into the cultivation medium, was used as an abiotic elicitor. Growth of cells and the content of phenolic compounds trans-resveratrol, trans-piceid, δ-viniferin, and ɛ-viniferin, were analyzed in grapevine cells treated by individual elicitors. The highest accumulation of analyzed individual stilbenes, except of trans-piceid has been observed after treatment with the cell wall homogenate from F. oxysporum. Maximum production of trans-resveratrol, δ- and ɛ-viniferins was triggered by treatment with cellulase from T. viride. The accumulation of trans-piceid in cell cultures elicited by this cellulase revealed exactly the opposite effect, with almost three times higher production of trans-resveratrol than that of trans-piceid. This study suggested that both used fungal elicitors can enhance production more effectively than commonly used jasmonates.


Sign in / Sign up

Export Citation Format

Share Document