fibril angle
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 1)

H-INDEX

7
(FIVE YEARS 0)

Author(s):  
Nils Horbelt ◽  
John W. C. Dunlop ◽  
Luca Bertinetti ◽  
Peter Fratzl ◽  
Michaela Eder

AbstractIsolated single wood fibres with cellulose fibril angles from 10 to 43° were tested in microtensile tests under controlled temperature and relative humidity of 5, 50, 75, 90% and in the wet state. This systematic study provides experimental stiffness and strength data, calculated on cell wall cross sections. It has been shown that stiffness reduction with increasing moisture content is more pronounced in fibres with large cellulose fibril angles. Interestingly, stiffness reduction in fibres with low cellulose fibril angles has been observed for the fully hydrated state only. The experimental dataset was fed into a model to determine moisture dependent stiffness of the hemicellulose-lignin-matrix and the stresses acting on the fibrils and the matrix.



2020 ◽  
Vol 0 (0) ◽  
Author(s):  
N. H. Vonk ◽  
M. G. D. Geers ◽  
J. P. M. Hoefnagels

AbstractThe dimensional stability of paper products is a well-known problem, affecting multiple engineering applications. The macroscopic response of paper to moisture variations is governed by complex mechanisms originating in the material at all length-scales down to the fiber-level. Therefore, a recently-developed method, based on Global Digital Height Correlation of surface topographies is here exploited to measure the full-field hygro-expansion of single fibers, i. e. a surface strain tensor map over the full field of view is obtained as function of time. From the strain field, the longitudinal and transverse hygro-expansion and principle strains can be calculated. Long- and intermediate-duration dynamic tests are conducted on softwood and hardwood fibers. A large spread in the softwood fiber’s transverse and longitudinal hygro-expansion coefficient ratio was found, while hardwood fibers behave more consistently. Computing the principle strain ratios reduces this spread, as it takes into account the variations of the deformation direction, which is directly affected by the micro-fibril angle (MFA). Furthermore, long-duration tests allow identification of the half-times at which the fibers equilibrate. Finally, the determined major strain angles for all fibers are consistent with the MFA ranges reported in the literature.



Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yusuke Kita ◽  
Junji Sugiyama

AbstractIdentifying two anatomically similar species of Cupressaceae, Chamaecyparis obtusa and Thujopsis spp., is important to better understand the culture of wood use in Japan. However, the conventional method, which involves observing their cross-field pitting, cannot identify them in many cases. This study solves the above problem by introducing an anatomical criterion based on the micro fibril angle (MFA). MFA values were obtained through two-dimensional MFA images using the uniaxial optical anisotropy of cellulose microfibrils. A combination of the preprocessed MFA images and a convolutional neural network (CNN) yielded an accuracy nearly of 90% in classifying these species in cases of present and old wood specimens. Our feature extraction and classification techniques provide a new way for describing the anatomical features of wood and identifying featureless softwoods. Using the model interpretation-related methodologies of the CNN, distinct features of the two wood species were partly explained by MFA anisotropy in the S2 wall induced by the existence of pits.



2020 ◽  
Vol 9 (2) ◽  
pp. 29-34
Author(s):  
Ratih Damayanti ◽  
Barbara Ozarska ◽  
I Ketut N. Pandit ◽  
Fauzi Febrianto ◽  
Gustan Pari

Jati Unggul Nusantara (JUN) is one of fast growing plantation teak that has been widely cultivated in Indonesia. This teak has been developed to be harvested after 5 years when its diameter reaches 25-32 cm (diameter at breast high). The diameter of JUN is usually three times larger than the conventional plantation teak (teak cultivated from seed) at the same age, and the same as 30-40 year-old mature teak. Preliminary research was conducted to determine anatomical and selected physical properties of 5-year-old JUN teak, as well as its suitability for furniture production. The results revealed that wood color, texture, and grain pattern of JUN were slightly different from the mature conventional teak. The length of fiber cells was similar as in the mature teak. There were differences in ultramicroscopic structure of JUN: the mean micro fibril angle was narrower, and the crystallites degree was larger. Shrinkage values from green to 12% moisture content were:  0.70 (radial-R) and 1.62 (tangential-T), and from green to oven dry were 1.59 (R) and 3.29 (T). T/R ratio was 2.34. Specific gravity in air dry condition was 0.52. Based on the research results it appears that 5-year-old JUN may be suitable for the production of medium quality furniture products. More research is required to investigate and enhance the properties of JUN for high quality products.



Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1484
Author(s):  
Maximilian Pramreiter ◽  
Sabine C. Bodner ◽  
Jozef Keckes ◽  
Alexander Stadlmann ◽  
Cedou Kumpenza ◽  
...  

The currently pursued implementation of wood into novel high performance applications such as automotive parts require knowledge about the material behaviour including ultimate strength. Previous research has shown that fiber deviation seems to be the dominating factor influencing the strength of thin veneers. This study aims to further investigate and quantify the influence of fiber deviation in two dimension and different hierarchical levels on the tensile strength of thin birch veneers. The fiber deviation in- and out-of-plane as well as the micro fibril angle were assessed by means of wide-angle X-ray scattering. Tensile strength was determined in laboratory experiments. Results show a high variability for in-plane fiber deviation mainly constituted by knots and other growth influencing factors. Pearson correlations between strength and fiber deviation ranged from −0.594 up to −0.852. Best correlation (r = −0.852) was achieved for maximum in-plane fiber deviation directly followed by a combined angle of in- and out-of-plane fiber deviation (r = −0.846). Based on the results it was shown that fiber deviation in- and out-of-plane is the dominating factor influencing ultimate tensile strength of thin birch veneers. Further research in regard to non-destructive strength prediction is necessary.



TAPPI Journal ◽  
2018 ◽  
Vol 17 (07) ◽  
pp. 383-392 ◽  
Author(s):  
John Long ◽  
Warren Batchelor

It has long been known that in individual wood fibers, the tensile mechanical properties are heavily determined by the nature of the cellulose chains in the fibers. Both elastic tensile modulus and strength are directly related to the fibril angle, which is the steepness with which the cellulose chains wind their way around the fiber in the secondary wall of the middle layer, named the S2 layer. Classic work from the 1970s measured modulus and strength in wood fibers as a function of the fibril angle and compared the results with theoretical models. The measurements were hampered by the presence of defects in the fibers, some which occurred naturally and others which resulted from pulp processing. In this study, we performed more accurate measurements of strength and modulus in single fibers of radiata pine by loading the fibers in cycles, gradually pulling some of the defects out of the fibers in an attempt to obtain defect-free values of modulus and strength. We then plotted these properties against measured fibril angle and compared our results with theoretical models. The results show that even when the fiber had reached maximum load before fracture, at a given value of fibril angle, it still had a measured modulus that is around half the theoretically expected value. The results suggest that the load required to fully remove defects from the fibers may be larger than the fibers can bear before fracturing.



2017 ◽  
Vol 173 ◽  
pp. 1198-1202 ◽  
Author(s):  
Akula Komuraiah ◽  
N. Shyam Kumar ◽  
B. Durga Prasad
Keyword(s):  


2015 ◽  
Vol 44 (2) ◽  
pp. 217-229 ◽  
Author(s):  
Wiesław Włoch

Compression wood from branches of <i>Pinus silvestris</i> L. was examined. Wide differences were noted in longitudinal shrinkage of the wood when dried from water saturated state. A relation was found between shrinkage and cell wall thickness, particularly of layer S<sub>2</sub>, and the degree of callose accumulation in the wall. No dependence could be revealed between the shrinkage and the fibril angle in S<sub>2</sub>.



IAWA Journal ◽  
2012 ◽  
Vol 33 (4) ◽  
pp. 431-439 ◽  
Author(s):  
Silke Lautner ◽  
Cordt Zollfrank ◽  
Jörg Fromm

Tension wood of poplar (Populus nigra) branches was studied by lightand electron microscopy. The characteristic features of tension wood such as wider growth rings, reduced vessel density and higher gross density were confirmed by our results. Based on a novel combination of transmission electron microscopy (TEM) imaging and image analysis, involving Fourier transformation, the orientation of cellulose microfibrils in the S2- and G-layer was determined. Within the G-layer microfibril angle (MFA) was parallel to the growth axis (0°). However, in the S2 it was 13° in tension wood fibres and 4° in normal wood fibres. With the exception of the relatively low fibril angle in the S2 of tension wood fibres (13°) the results are in good agreement with those of the literature.



Sign in / Sign up

Export Citation Format

Share Document