scholarly journals NUMERICAL MODELLING OF BIRD STRIKE ON A ROTATING ENGINE BLADES BASED ON VARIATIONS OF POROSITY DENSITY

2022 ◽  
Vol 23 (1) ◽  
pp. 412-423
Author(s):  
Sharis-Shazzali Shahimi ◽  
Nur Azam Abdullah ◽  
Ameen Topa ◽  
Meftah Hrairi ◽  
Ahmad Faris Ismail

A numerical investigation is conducted on a rotating engine blade subjected to a bird strike impact. The bird strike is numerically modelled as a cylindrical gelatine with hemispherical ends to simulate impact on a rotating engine blade. Numerical modelling of a rotating engine blade has shown that bird strikes can severely damage an engine blade, especially as the engine blade rotates, as the rotation causes initial stresses on the root of the engine blade. This paper presents a numerical modelling of the engine blades subjected to bird strike with porosity implemented on the engine blades to investigate further damage assessment due to this porosity effect. As porosity influences the decibel levels on a propeller blade or engine blade, the damage due to bird strikes can investigate the compromise this effect has on the structural integrity of the engine blades. This paper utilizes a bird strike simulation through an LS-Dyna Pre-post software. The numerical constitutive relations are keyed into the keyword manager where the bird’s SPH density, a 10 ms simulation time, and bird velocity of 100 m/s are all set. The blade rotates counter-clockwise at 200 rad/s with a tetrahedron mesh. The porous regions or voids along the blade are featured as 5 mm diameter voids, each spaced 5 mm apart. The bird is modelled as an Elastic-Plastic-Hydrodynamic material model to analyze the bird’s fluid behavior through a polynomial equation of state. To simulate the fluid structure interaction, the blade is modelled with Johnson-Cook Material model parameters of aluminium where the damage of the impact can be observed. The observations presented are compared to previous study of a bird strike impact on non-porous engine blades. ABSTRAK: Penyelidikan berangka telah dijalankan ke atas bilah enjin berputar tertakluk kepada impak pelanggaran burung. Pelanggaran burung tersebut telah dimodelkan secara berangka sebagai silinder gelatin dengan hujungnya berbentuk hemisfera demi mensimulasikan impaknya ke atas bilah enjin yang berputar. Pemodelan berangka bilah-bilah enjin yang berputar tersebut menunjukkan bahawa pelanggaran burung mampu menyebabkan kerosakan teruk terhadap bilah enjin terutamanya apabila bilah enjin sedang berputar oleh sebab putaran menghasilkan tekanan asal di pangkal bilah enjin. Kajian ini mengetengahkan pemodelan berangka ke atas bilah-bilah enjin tertakluk kepada pelanggaran burung terhadap bilah-bilah enjin yg mempunyai keliangan demi menyelidik dan menilai kerosakan kesan daripada keliangan tersebut. Keliangan juga mempengaruhi tahap-tahap desibel ke atas bilah kipas ataupun bilah enjin, kerosakan hasil serangan burung boleh menterjemah tahap ketahanan struktur integriti bagi bilah-bilah enjin tersebut. Penyelidikan ini mengguna pakai perisian “LS-Dyna Pre-post” untuk simulasi pelanggaran burung. Hubungan konstitutif berangka telah dimasukkan sebagai kata kunci di mana ketumpatan SPH burung, masa simulasi 10ms, dan halaju burung ditetapkan kepada 100 m/s. Bilah tersebut berputar pada 200 rad/s arah lawan jam dengan jejaring tetrahedron. Kawasan berliang atau kosong di sepanjang bilah ditetapkan diameternya kepada 5 mm, dan dijarakkan 5 mm di antara satu sama lain. Burung pula dimodelkan sebagai material “Elastic-Plastic-Hydrodynamic” untuk mengkaji sifat bendalir burung melalui persamaan polinomial. Demi mensimulasi interaksi struktur bendalir, bilah tersebut dimodelkan sebagai parameter aluminium material “Johnson Cook” di mana kerosakan daripada impak tersebut dapat diteliti. Penelitian-penelitian tersebut dibandingkan dengan kajian terdahulu ke atas serangan burung terhadap bilah-bilah enjin tidak berliang.

2019 ◽  
Vol 141 (2) ◽  
Author(s):  
Abhi Sirimamilla ◽  
Hua Ye ◽  
Yinan Wu

Using finite element (FE) analysis to simulate drop impact is widely adopted by the consumer electronics industry in the design process of portable devices. Most of such simulations model impact surface as a rigid or simple elastic surface. While this approach is valid for many common hard surfaces such as wood, tile, or concrete, it often does not provide a realistic risk assessment if the impact surface is a soft surface such as carpet. This paper describes a methodology to create a material model for carpeted impact surface that is suited for FE drop simulation. A multilayer hyperelastic–viscoelastic material model is used to model the mechanical response of the carpet under mechanical impact. Quasi-static and impact testing on the industrial carpet were performed to calibrate the model parameters with the help of optimization. Validation of the model was done by comparing the simulation predictions with measurements from the impact tests performed at different heights. Much better correlation between experimental measurements and simulation predictions were observed when using the multilayer hyper-viscoelastic model for carpet than using a single layer homogenous model. This approach can provide a better estimate and a more accurate representation for device drop risk on carpeted surfaces for design and development of portable products. The methodology can also be used to derive material models for other similar impact surfaces.


2014 ◽  
Vol 598 ◽  
pp. 113-118 ◽  
Author(s):  
Paweł Grzegorz Kossakowski ◽  
Wiktor Wciślik

The article describes an example of the GTN material model parameters determination and application. The main objective of the study was to determine experimentally the value of the critical volume fraction of voids fFfor S235JR steel and to assess the impact of this parameter on the numerical force-elongation curve under the multi-axial stress state. Value of fFwas obtained by the quantitative analysis of the material microstructure at fracture surfaces. For a sake of comparison, two other values of fF, described in the literature, were also used in numerical simulations.


Author(s):  
Jun Shen ◽  
Heng Peng ◽  
Liping Wan ◽  
Yanfang Tang ◽  
Yinghua Liu

In the past, shakedown evaluation was usually based on the elastic method that the sum of the primary and secondary stress should be limited to 3Sm or the simplified elastic-plastic analysis method. The elastic method is just an approximate analysis, and the rigorous evaluation of shakedown normally requires an elastic-plastic analysis. In this paper, using an elastic perfectly plastic material model, the shakedown analysis was performed by a series of elastic-plastic analyses. Taking a shell with a nozzle subjected to parameterized temperature loads as an example, the impact of temperature change on the shakedown load was discussed and the shakedown loads of this structure at different temperature change rates were also obtained. This study can provide helpful references for engineering design.


Author(s):  
Jukka Ka¨hko¨nen ◽  
Pentti Varpasuo

The paper describes basis of a microplane concrete material model which was implemented in a commercial FE -code using user subroutine interface. The material model is called M4. The motivation for this implementation was a need for a concrete model which would perform well in a soft missile impact analysis. Numerical integration over the surface of a unit sphere is crucial to microplane material models. We tested our microplane implementation using several numerical integration formulas presented in literature. The two fairly simple test cases described in this paper revealed clearly the numerical anisotropy induced by the integration formulations. The impact problem was a medium size, medium velocity soft missile impact test case from an international research program. We compared our implementation of M4 model to a tensorial based damage plasticity concrete model and found out that the results were almost identical. However, the numerical results did not agree well with the measurements in this test case. We concluded this disagreement might be consequence of nonlinear phenomena beyond material constitutive relations.


2010 ◽  
Vol 77 (4) ◽  
Author(s):  
Robert Seifried ◽  
Hirofumi Minamoto ◽  
Peter Eberhard

Generally speaking, impacts are events of very short duration and a common problem in machine dynamics. During impact, kinetic energy is lost due to plastic deformation near the contact area and excitation of waves. Macromechanically, these kinetic energy losses are often summarized and expressed by a coefficient of restitution, which is then used for impact treatment in the analysis of the overall motion of machines. Traditionally, the coefficient of restitution has to be roughly estimated or measured by experiments. However, more recently finite element (FE) simulations have been used for its evaluation. Thereby, the micromechanical plastic effects and wave propagation effects must be understood in detail and included in the simulations. The plastic flow, and thus the yield stress of a material, might be independent or dependent of the strain-rate. The first material type is called elastic-plastic and the second type is called elastic-viscoplastic. In this paper, the influence of viscoplasticity of aluminum and steel on the impact process and the consequences for the coefficient of restitution is analyzed. Therefore, longitudinal impacts of an elastic, hardened steel sphere on aluminum AL6060 rods and steel S235 rods are investigated numerically and experimentally. The dynamic material behavior of the specimens is evaluated by split Hopkinson pressure bar tests and a Perzyna-like material model is identified. Then, FE impact simulations and impact experiments with laser-doppler-vibrometers are performed. From these investigations it is shown that strain-rate effects of the yield stress are extremely small for impacts on aluminum but are significant in impacts on steel. In addition, it is demonstrated that it is possible to evaluate for both impact systems the coefficient of restitution numerically, whereas for the aluminum body a simple elastic-plastic material model is sufficient. However, for the steel body an elastic-viscoplastic material model must be included.


2018 ◽  
Vol 45 (1) ◽  
pp. 18-29 ◽  
Author(s):  
Ekaterina Kharik ◽  
Brian Morse ◽  
Varvara Roubtsova ◽  
Mario Fafard ◽  
Alain Côté ◽  
...  

It is important to anticipate potential maximum ice loads to ensure the structural stability of dams in cold climates. Finite element modeling (FEM) can provide some insights into process mechanisms. Four important ice-loading events on dams are presented and simulated. The measured loads were caused by the thermal expansion of ice together with intermediate water level fluctuations. Only the thermal expansion is modeled by the FEM, but the impact of water level fluctuations can increase lateral confinement that increases the predicted load by 36% to 106%, particularly when the cover contains mostly columnar ice. It is demonstrated that the presence of snow ice in the cover can decrease the predicted load by 35% to 53%. The study also demonstrates how initial stresses in the ice can affect the ultimate load and show that the very-difficult-to-manage delayed-elastic strain term need not be included in the material model where preliminary results suffice.


Meccanica ◽  
2021 ◽  
Vol 56 (2) ◽  
pp. 393-416
Author(s):  
L. Rose ◽  
A. Menzel

AbstractThe possibility of accurately identifying thermal material parameters on the basis of a simple tension test is presented, using a parameter identification framework for thermo-mechanically coupled material models on the basis of full field displacement and temperature field measurements. Main objective is to show the impact of the material model formulation on the results of such an identification with respect to accuracy and uniqueness of the result. To do so, and as a proof of concept, the data of two different experiments is used. One experiment including cooling of the specimen, due to ambient temperature, and one without specimen cooling. The main constitutive relations of two basic material models are summarised (associated and non-associated plasticity), whereas both models are extended so as to introduce an additional material parameter for the thermodynamically consistent scaling of dissipated energy. The chosen models are subjected to two parameter identifications each, using the data of either experiment and focusing on the determination of thermal material parameters. The influence of the predicted dissipated energy of the models on the identification process is investigated showing that a specific material model formulation must be chosen carefully. The material model with associated evolution equations used within this work does neither allow a unique identification result, nor is any of the solutions for the underlying material parameters close to literature values. In contrast to that, a stable, that is locally unique, re-identification of the literature values is possible for the boundary problem at hand if the model with non-associated evolution equation is used and if cooling is included in the experimental data.


Author(s):  
Uzair A Dar ◽  
Muhammad Awais ◽  
Haris H Mian ◽  
Muhammad Z Sheikh

A physically representative bird modeling approach is presented to highlight its significance over traditional substitute bird modeling. To give better representation of a real bird, in this study, the bird was modeled as a fluid body while impacting the rigid and deformable structures. For this, an elastic plastic hydrodynamic material model in conjunction with polynomial equation of state is utilized to model the bird behavior. In addition, smoothed particle hydrodynamics (SPH)-based meshless technique was implemented to build real bird model instead of using finite element-based classical mesh technique in order to avoid mesh connectivity and tangling problems. The numerical scheme was validated by comparing the deformation and pressure profile of the impact on rigid and deformable targets with the available experimental data. The results showed that the physically representative bird impacting the rigid and deformable target give correct values of pressure peak than that of substitute bird. The study also revealed that, the bird impacting the target from bottom direction resulted higher magnitude of pressure shock than head, tail or wing direction. In addition, the instantaneous peak impulse during bottom side impact is more detrimental to impacting structure than other impact directions. Finally, after quantifying the effect of bird impact directions, the work was further extended to establish a full-scale numerical model of a military aircraft windshield–canopy structure to determine its dynamic response against similar impact scenarios. The results showed that the bird impacting from bottom side requires relatively less velocity to initiate failure in the windshield than other impact directions. Thus, the bird impacting from its bottom side was recognized as the most dangerous impact condition for structural integrity of windshield.


2021 ◽  
Vol 12 (1) ◽  
pp. 7
Author(s):  
Bin Wu ◽  
Reza Hedayati ◽  
Zhehua Li ◽  
Mahsa Aghajanpour ◽  
Guichang Zhang ◽  
...  

Bird strikes are one major accident for aircraft engines and can inflict heavy casualties and economic losses. In this study, a smoothed particle hydrodynamics (SPH) mallard model has been used to simulate bird impact to rotary aero-engine fan blades. The simulations were performed using the finite element method (FEM) at LS-DYNA. The reliability of the material model and numerical method was verified by comparing the numerical results with Wilberk’s experimental results. The effects of impact and bearing parameters, including bird impact location, bird impact orientation, initial bird velocity, fan rotational speeds, stiffness of the bearing, and the damping of the bearing on the bird impact to aero-engine fan blade are studied and discussed. The results show that both the impact location and bird orientation have significant effects on the bird strike results. Bird impact to blade roots is the most dangerous scenario causing the impact force to reach 390 kN. The most dangerous orientation is the case where the bird’s head is tilted 45° horizontally, which leads to huge fan kinetic energy loss as high as 64.73 kJ. The bird’s initial velocity affects blade deformations. The von Mises stress during the bird strike process can reach 1238 MPa for an initial bird velocity of 225 m/s. The fan’s rotational speed and the bearing stiffness affect the rotor stability significantly. The value of bearing damping has little effect on the bird strike process. This paper gives an idea of how to evaluate the strength of fan blades in the design period.


Author(s):  
Vidar Berntsen ◽  
Carl M. Larsen ◽  
Elizabeth Passano ◽  
Nilo De Moura Jorge ◽  
Jose´ Roberto

This paper presents analysis method and key results from dynamic simulations of a drilling riser on 1900 metres water depth after release of upper end. Key results are the geometry of the collapsed riser on the seafloor (footprint) and the impact speed of the riser when hitting the seafloor. The purpose of the study has been to investigate the influence on the results from operational and model parameters such as vessel offset relative to the riser base, current speed, hydrodynamic load model, material model and interaction between the riser and the seafloor. The main conclusion from the study is that most trends from parameter variations are weak and often overshadowed by a more stochastic variation caused by the inherent complexity of the mechanical behaviour during collapse.


Sign in / Sign up

Export Citation Format

Share Document