scholarly journals Moisture Vapor Permeability and Thermal Wear Comfort of Ecofriendly Fiber-Embedded Woven Fabrics for High-Performance Clothing

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6205
Author(s):  
Hyun-Ah Kim

This study examined the moisture vapor permeability and thermal wear comfort of ecofriendly fiber-embedded woven fabrics in terms of the yarn structure and the constituent fiber characteristics according to two measuring methods. The moisture vapor permeability measured using the upright cup (CaCl2) method (JIS L 1099A-1) was primarily dependent on the hygroscopicity of the ecofriendly constituent fibers in the yarns and partly influenced by the pore size in the fabric because of the yarn structure. On the other hand, the moisture vapor resistance measured using the sweating guarded hot plate method (ISO 11092) was governed mainly by the fabric pore size and partly by the hygroscopicity of the constituent ecofriendly fibers. The difference between the two measuring methods was attributed to the different mechanisms in the measuring method. The thermal conductivity as a measure of the thermal wear comfort of the composite yarn fabrics was governed primarily by the pore size in the fabric and partly by the thermal characteristics of the constituent fibers in the yarns. Lastly, considering market applications, the Coolmax®/Tencel sheath/core fabric appears useful for winter warm feeling clothing because of its the good breathability with low thermal conductivity. The bamboo and Coolmax®/bamboo fabrics are suitable for summer clothing with a cool feel because of their high thermal conductivity with good breathability. Overall, ecofriendly fibers (bamboo and Tencel) are of practical use for marketing environmentallyfriendly high-performance clothing.

2014 ◽  
Vol 9 (3) ◽  
pp. 155892501400900
Author(s):  
Gunasekaran Govindachetty ◽  
Periyasamy Sidhan ◽  
Koushik C. Venkatraman

Thermo-physiological comfort in clothing mainly lies in moisture management, which often refers to the transport of both moisture vapor and liquid away from the body. Moisture management of fabrics is chiefly influenced by the thermal properties of those fabrics. In spite of the convincing properties that synthetic fabrics have, they are not much preferred because of their hydrophobic nature which provides less comfort to the wearer compared to the natural fabrics like cotton, wool, and silk. Previous studies report that the herbal finishes, which are eco-friendly in nature, improve the anti-microbial and other medicinal properties but very little or no work has been carried out on the comfort aspect of these fabrics. This work reports a study of the influence of two ecofriendly herbal finishes, Neem and Bermuda grass, on the thermo-physiological comfort properties of synthetic fabrics used in clothing. The herbal finishes were applied on to 100% Polyester and 50/50 Polyester/Acrylic blended fabrics. Prior to the application of finishes, the fabrics were given a pretreatment to achieve a better penetration and durability of the finishes. The finished fabrics were tested for the thermo-physiological comfort properties of Wicking, Water vapor permeability, and Thermal conductivity and the results were analyzed. It was revealed that both the Neem and Bermuda grass natural finishes considerably improved the moisture related properties and moderately reduced the thermal conductivity characteristics of the above synthetic fabrics. Durability to washing was also tested and discussed.


2019 ◽  
Vol 26 (2) ◽  
pp. 390-401 ◽  
Author(s):  
Prisca Aude Eutionnat-Diffo ◽  
Yan Chen ◽  
Jinping Guan ◽  
Aurélie Cayla ◽  
Christine Campagne ◽  
...  

Purpose This paper aims to evaluate and simulate the impact of the build platform temperature of the three-dimensional (3D) printer, the structure and heat transfer of textiles on the adhesion and durability after washing properties of 3D printed polymer onto textile materials using thin layers of conductive and non-conductive extruded poly lactic acid monofilaments (PLA) deposited on polyethylene terephthalate (PET) woven fabrics through fused deposition modeling (FDM) process. Design/methodology/approach Prior to FDM process, thermal conductivity, surface roughness and mean pore size of PET woven fabrics were assessed using the “hot disk,” the profilometer and the capillary flow porometry methods, respectively. After the FDM process, the adhesion and durability after the washing process properties of the materials were determined and optimized based on reliable statistical models connecting those properties to the textile substrate properties such as surface roughness, mean pore size and thermal conductivity. Findings The main findings point out that higher roughness coefficient and mean pore size and lower thermal conductivity of polyester woven textile materials improve the adhesion properties and the build platform presents a quadratic effect. Additionally, the adhesion strength decreases by half after the washing process and rougher and more porous textile structures demonstrate better durability. These results are explained by the surface topography of textile materials that define the anchorage areas between the printed layer and the textiles. Originality/value This study is for great importance in the development of smart textiles using FDM process as it presents unique and reliable models used to optimize adhesion resistance of 3D printed PLA primary layer onto PET textiles.


2019 ◽  
Vol 14 ◽  
pp. 155892501984597
Author(s):  
Ali Tahvildar ◽  
Nazanin Ezazshahabi ◽  
Fatemeh Mousazadegan

Worsted woven fabrics are considered as a prominent sort of outwear garments; the comfort and appearance properties of which have attracted the attention of researchers and producers. The fabric constructional parameters and the characteristics of yarns used for weaving this group of fabrics can affect their efficiency, comfort, and esthetic characteristics. In this regard, 16 sets of worsted fabrics with four various weave structures (plain, twill 2/1, twill 2/2, and hopsack 2/2) and four groups of yarns which were spun in different yarn-spinning systems (Solo, Siro, single-ply ring, and two-ply ring) were studied. The analysis of results revealed that the open structure and the movability of yarns in the fabric can improve the crease recovery angle, flexibility, air permeability, and water vapor permeability of the fabrics, while decreasing the abrasion and pilling resistance. In addition, the yarns that are spun in various spinning systems, due to their different level of compactness and the location of fibers in the yarn structure, can significantly affect the comfort and appearance properties of the fabrics.


2016 ◽  
Vol 11 (2) ◽  
pp. 155892501601100 ◽  
Author(s):  
Xiaoxia Liu ◽  
Tingting Wang ◽  
Mingyu Zhuang ◽  
Binjie Xin ◽  
Wei Liu

The thermal conductivity of several high performance woven fabrics at temperatures ranging from −50? to 200? was measured using the hot wire method to explore the relationship between the thermal conductivity and temperature. Data regression of the least squares was used to obtain curves of the thermal conductivity of various fabrics vs. temperature. Results show that the thermal transfer process in woven fabrics is mainly thermal conduction consisting of phonon and molecular conduction. Thermal conductivity as a function of temperature varies as temperature range changes, and is significantly affected by fiber type.


2019 ◽  
Vol 89 (21-22) ◽  
pp. 4658-4669
Author(s):  
Hyun Ah Kim

This study examined the thermal wear comfort of clothing made from flame-retardant (FR) rayon- and cotton-blended fabric using a thermal manikin and wearer trials. In addition, the tactile hand property of the FR rayon-blended fabric was predicted and compared with that of the cotton-blended one using the Fabric Assurance Simple Testing system. The FR rayon-blended fabric exhibited a lower heat insulation rate than that of the cotton-blended one in the thermal manikin experiment and lower microclimate humidity during 40 min walking in the human subject experiment. The FR rayon-blended fabric was more extensible than the cotton-blended one, with a lower bending rigidity and shear modulus. This study showed that FR rayon-blended fabric has better thermal wear comfort and a superior tactile hand feel compared with the cotton-blended one, without any significant difference of pilling compared to the cotton-blended modacrylic one.


Alloy Digest ◽  
1999 ◽  
Vol 48 (1) ◽  

Abstract Olin C197 is a second-generation high performance alloy developed by Olin Brass. It has a strength and bend formability similar to C194 (see Alloy Digest Cu-360, September 1978), but with 25% higher electrical and thermal conductivity. High conductivity allows C197 to replace brasses and bronzes in applications where high current-carrying capability is required. Also, the strength of C197 provides higher contact forces when substituted for many lower strength coppers. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion and wear resistance as well as forming and joining. Filing Code: CU-627. Producer or source: Olin Brass.


1989 ◽  
Vol 170 ◽  
Author(s):  
Benjamin S. Hsiao ◽  
J. H. Eric

AbstractTranscrystallization of semicrystalline polymers, such as PEEK, PEKK and PPS, in high performance composites has been investigated. It is found that PPDT aramid fiber and pitch-based carbon fiber induce a transcrystalline interphase in all three polymers, whereas in PAN-based carbon fiber and glass fiber systems, transcrystallization occurs only under specific circumstances. Epitaxy is used to explain the surface-induced transcrystalline interphase in the first case. In the latter case, transcrystallization is probably not due to epitaxy, but may be attributed to the thermal conductivity mismatch. Plasma treatment on the fiber surface showed a negligible effect on inducing transcrystallization, implying that surface-free energy was not important. A microdebonding test was adopted to evaluate the interfacial strength between the fiber and matrix. Our preliminary results did not reveal any effect on the fiber/matrix interfacial strength of transcrystallinity.


2021 ◽  
Vol 7 (20) ◽  
pp. eabe6000
Author(s):  
Lin Yang ◽  
Madeleine P. Gordon ◽  
Akanksha K. Menon ◽  
Alexandra Bruefach ◽  
Kyle Haas ◽  
...  

Organic-inorganic hybrids have recently emerged as a class of high-performing thermoelectric materials that are lightweight and mechanically flexible. However, the fundamental electrical and thermal transport in these materials has remained elusive due to the heterogeneity of bulk, polycrystalline, thin films reported thus far. Here, we systematically investigate a model hybrid comprising a single core/shell nanowire of Te-PEDOT:PSS. We show that as the nanowire diameter is reduced, the electrical conductivity increases and the thermal conductivity decreases, while the Seebeck coefficient remains nearly constant—this collectively results in a figure of merit, ZT, of 0.54 at 400 K. The origin of the decoupling of charge and heat transport lies in the fact that electrical transport occurs through the organic shell, while thermal transport is driven by the inorganic core. This study establishes design principles for high-performing thermoelectrics that leverage the unique interactions occurring at the interfaces of hybrid nanowires.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 525
Author(s):  
Ana Kiš ◽  
Snježana Brnada ◽  
Stana Kovačević

In this work, aramid fibers were used to develop new, high-performance fabrics for high-temperature protective clothing. The research was based on the impact of the weave structure on fabric resistance to radiant heat. The goals of the research were primarily related to the development of new fabric structures created by the weave structure, which gives better protection of the body against high temperatures in relation to the standard weave structures that are used today. According to the results obtained it can be concluded that the fabric weave significantly affects the fabric structure, which consequently determines the effectiveness of protection against high temperatures. The justification for the use of multi-weft and strucks weave structure, which provides greater thermal protection and satisfactory breathability than commonly used weave structures, was ascertained.


Sign in / Sign up

Export Citation Format

Share Document