sperm fertilizing ability
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 7)

H-INDEX

17
(FIVE YEARS 0)

Author(s):  
María Milagros Giaccagli ◽  
Matías Daniel Gómez-Elías ◽  
Jael Dafne Herzfeld ◽  
Clara Isabel Marín-Briggiler ◽  
Patricia Sara Cuasnicú ◽  
...  

To become fully competent to fertilize an egg, mammalian sperm undergo a series of functional changes within the female tract, known as capacitation, that require an adequate supply and management of energy. However, the contribution of each ATP generating pathway to sustain the capacitation-associated changes remains unclear. Based on this, we investigated the role of mitochondrial activity in the acquisition of sperm fertilizing ability during capacitation in mice. For this purpose, the dynamics of the mitochondrial membrane potential (MMP) was studied by flow cytometry with the probe tetramethylrhodamine ethyl ester (TMRE). We observed a time-dependent increase in MMP only in capacitated sperm as well as a specific staining with the probe in the flagellar region where mitochondria are confined. The MMP rise was prevented when sperm were exposed to the mitochondrial uncoupler carbonyl cyanide m-chlorophenyl hydrazine (CCCP) or the protein kinase A (PKA) inhibitor H89 during capacitation, indicating that MMP increase is dependent on capacitation and H89-sensitive events. Results showed that whereas nearly all motile sperm were TMRE positive, immotile cells were mostly TMRE negative, supporting an association between high MMP and sperm motility. Furthermore, CCCP treatment during capacitation did not affect PKA substrate and tyrosine phosphorylations but produced a decrease in hyperactivation measured by computer assisted sperm analysis (CASA), similar to that observed after H89 exposure. In addition, CCCP inhibited the in vitro sperm fertilizing ability without affecting cumulus penetration and gamete fusion, indicating that the hyperactivation supported by mitochondrial function is needed mainly for zona pellucida penetration. Finally, complementary in vivo fertilization experiments further demonstrated the fundamental role of mitochondrial activity for sperm function. Altogether, our results show the physiological relevance of mitochondrial functionality for sperm fertilization competence.



Author(s):  
Ludmila Curci ◽  
Guillermo Carvajal ◽  
Valeria Sulzyk ◽  
Soledad Natalia Gonzalez ◽  
Patricia S. Cuasnicú

Cation channel of sperm (CatSper), the main sperm-specific Ca2+ channel, plays a key role in mammalian fertilization, and it is essential for male fertility, becoming an attractive target for contraception. Based on this, in the present work, we investigated the effects of CatSper inactivation on in vitro and in vivo sperm fertilizing ability and the mechanisms underlying such effects. Exposure of cauda epididymal mouse sperm to different concentrations (1–20 μM) of the potent CatSper inhibitor HC-056456 (HC) during in vitro capacitation showed no effects on sperm viability but significantly affected Ca2+ entry into the cells, progressive motility, protein tyrosine phosphorylation, induced acrosome reaction, and hyperactivation, as well as the sperm’s ability to in vitro fertilize cumulus oocyte complexes and zona-free eggs. Whereas the presence of HC during gamete coincubation did not affect in vitro fertilization, exposure of either non-capacitating or already capacitated sperm to HC prior to gamete coincubation severely reduced fertilization, indicating that sperm function is affected by HC when the cells are incubated with the drug before sperm–egg interaction. Of note, insemination of HC-treated sperm into the uterus significantly or completely reduced the percentage of oviductal fertilized eggs showing, for the first time, the effects of a CatSper inhibitor on in vivo fertilization. These observations, together with the finding that HC affects sperm fertilizing ability independently of the sperm capacitation status, provide further insights on how CatSper regulates sperm function and represent a solid proof of concept for developing a male/female non-hormonal contraceptive based on the pharmacological blockage of CatSper activity.



Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 772
Author(s):  
José Luis Ros-Santaella ◽  
Eliana Pintus

Sperm preservation is a crucial factor for the success of assisted reproductive technology (ART) in humans, livestock, and wildlife. Irrespective of the extender and the storage conditions used, semen handling and preservation negatively affect sperm quality. Moreover, oxidative stress, which often arises during semen storage, significantly reduces sperm function and compromises the sperm fertilizing ability by inducing oxidative damage to proteins, lipids, and nucleic acids. Plant extracts have recently emerged as a cheap and natural source of additives to preserve and enhance sperm function during semen storage. The present work provides an update on the use of these natural compounds as alternative additives for sperm preservation in 13 animal species, including humans. A detailed description of the effects of 45 plant species, belonging to 28 families, on sperm function during semen storage is presented. The plant material and extraction method employed, dosage, possible toxic effects, and antimicrobial properties are provided.



2021 ◽  
Vol 8 ◽  
Author(s):  
Fenglei Gao ◽  
Ping Wang ◽  
Kai Wang ◽  
Yushan Fan ◽  
Yuming Chen ◽  
...  

The proteins in the seminal plasma and on the sperm surface play important roles in sperm function and numerous reproductive processes. The cysteine-rich secretory proteins (CRISPs) are enriched biasedly in the male reproductive tract of mammals, and CRISP2 is the sole member of CRISPs produced during spermatogenesis; whereas the role of CRISP2 in fertilization and its association with fertility of boars are still unclear. This study aimed to investigate the relationship between the sperm CRISP2 and boar fertility, and explore its impact sperm fertilizing ability. The levels of CRISP2 protein in sperm were quantified by ELISA; correlation analysis was performed to evaluate the association between CRISP2 protein levels and boar reproductive parameters. Meanwhile, the expression of CRISP2 in boar reproductive organs and sperm, and the effects of CRISP2 on in vitro fertilization (IVF) were examined. The results showed that boars with high sperm levels of CRISP2 had high fertility. The protein levels of CRISP2 in sperm were positively correlated with the litter size (r = 0.412, p = 0.026), the number of live-born piglets (r = 0.421, p = 0.023) and the qualified piglets per litter (r = 0.381, p = 0.042). CRISP2 is specifically expressed in the testis and sperm of adult boars, and its location on sperm changed mainly from the post-acrosomal region to the apical segment of acrosome during capacitation. The cleavage rate was significantly decreased by adding the anti-CRISP2 antibody to the IVF medium, which indicates CRISP2 plays a critical role in fertilization. In conclusion, CRISP2 protein is specifically expressed in the adult testis and sperm and is associated with sperm fertilizing ability and boar fertility. Further mechanistic studies are warranted, in order to fully decipher the role of CRISP2 in the boar reproduction.



Author(s):  
Anaïs Vitorino Carvalho ◽  
Laura Soler ◽  
Aurore Thélie ◽  
Isabelle Grasseau ◽  
Luiz Cordeiro ◽  
...  

The molecular basis of male fertility remains unclear, especially in chickens, where decades of genetic selection increased male fertility variability as a side effect. As transcription and translation are highly limited in sperm, proteins are key molecules defining their functionality, making proteomic approaches one of the most adequate methods to investigate sperm capacity. In this context, it is interesting to combine complementary proteomic approaches to maximize the identification of proteins related to sperm-fertilizing ability. In the present study, we aimed at identifying proteins related to fertility in meat-type roosters, showing fertility variability. Fertile roosters (fertility rates higher than 70% after artificial insemination) differed from subfertile roosters (fertility rates lower than 40%) in their sperm mass motility. Fertile and subfertile sperm protein contents were compared using two complementary label-free quantitative proteomic methods: Intact Cell MALDI-TOF-Mass Spectrometry and GeLC-MS/MS. Combining the two strategies, 57 proteins were identified as differentially abundant. Most of them were described for the first time as differentially abundant according to fertility in this species. These proteins were involved in various molecular pathways including flagellum integrity and movement, mitochondrial functions, sperm maturation, and storage in female tract as well as oocyte–sperm interaction. Collectively, our data improved our understanding of chicken sperm biology by revealing new actors involved in the complexity of male fertility that depends on multiple cell functions to reach optimal rates. This explains the inability of reductionist in vitro fertility testing in predicting male fertility and suggests that the use of a combination of markers is a promising approach.



Reproduction ◽  
2021 ◽  
Author(s):  
Arabela Guedes de Azevedo Viana ◽  
Iara Magalhães Ribeiro ◽  
Renner Philipe Rodrigues Carvalho ◽  
Erdogan Memili ◽  
Arlindo Alencar Moura ◽  
...  

Proteomic approaches have been widely used in reproductive studies to uncover protein biomarkers of bull fertility. Seminal plasma is one of the most relevant sources of these proteins that may influence sperm physiology. Nonetheless, there are still gaps in existing knowledge in the functional attributes of seminal proteins. Thus, we reviewed the relationships between seminal plasma proteins and bull fertility by conducting a systematic review with data obtained from 71 studies. This review showed that the associations between fertility improvement with the use of total seminal plasma proteins are still controversial. None of the studies explored the sperm fertilizing ability following these interactions. By contrast, the exposure to a single protein, such as osteopontin, binder of sperm proteins, and heparin binding proteins, can increment sperm motility, capacitation, and fertilizing ability by modulating intracellular calcium concentrations, removing lipids from sperm membranes, and regulating the acrosome reaction. Variations in protein analyses and the protein contents and their abundances between animals contributed to the difficulty of establishing protein biomarkers of fertilizing potential of the bull sperm. Indeed, the heterogenicity of methodologies was a limitation of this review. Standardized methods of seminal protein analyses, as well as sperm endpoints, may minimize such discrepancies. In conclusion, potential biomarkers of sperm parameters are still to be established. Future studies should evaluate protein isoforms and how they interact with sperm to ascertain their biological functions.



2020 ◽  
Vol 155 ◽  
pp. 168-175 ◽  
Author(s):  
Julieta Gabriela Hamze ◽  
José María Sánchez ◽  
Elena O’Callaghan ◽  
Michael McDonald ◽  
Pablo Bermejo-Álvarez ◽  
...  


2019 ◽  
Vol 67 (18) ◽  
pp. 5240-5249 ◽  
Author(s):  
Yu Liu ◽  
Chen Liang ◽  
Yan Gao ◽  
Shanshan Jiang ◽  
Yuyang He ◽  
...  


Zygote ◽  
2019 ◽  
Vol 27 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Gabriela Hernández-Silva ◽  
Mayel Chirinos

SummarySpermatogenesis is a dynamic process that culminates in the production of mature spermatozoa in the seminiferous tubules of sexually mature animals. Although sperm leaving the testis are fully differentiated, they must further undergo two additional maturation steps before acquiring the capability to fertilize the egg. Such processes take place during the epididymal residency and transport in the seminal fluid during ejaculation and, after delivery into the female reproductive tract, during the journey aiming the encountering the egg in the oviduct. Throughout this trip, spermatozoa are exposed to different reproductive fluids whose molecular compositions regulate the progress towards obtaining a fertilized competent cell. This review summarizes the evidence obtained so far supporting the participation of male and female reproductive tract-derived proteins in the modulation of sperm fertilizing ability and discusses the mechanisms by which such regulation may be accomplished.



Sign in / Sign up

Export Citation Format

Share Document