scholarly journals Investigation Into the Relationship Between Sperm Cysteine-Rich Secretory Protein 2 (CRISP2) and Sperm Fertilizing Ability and Fertility of Boars

2021 ◽  
Vol 8 ◽  
Author(s):  
Fenglei Gao ◽  
Ping Wang ◽  
Kai Wang ◽  
Yushan Fan ◽  
Yuming Chen ◽  
...  

The proteins in the seminal plasma and on the sperm surface play important roles in sperm function and numerous reproductive processes. The cysteine-rich secretory proteins (CRISPs) are enriched biasedly in the male reproductive tract of mammals, and CRISP2 is the sole member of CRISPs produced during spermatogenesis; whereas the role of CRISP2 in fertilization and its association with fertility of boars are still unclear. This study aimed to investigate the relationship between the sperm CRISP2 and boar fertility, and explore its impact sperm fertilizing ability. The levels of CRISP2 protein in sperm were quantified by ELISA; correlation analysis was performed to evaluate the association between CRISP2 protein levels and boar reproductive parameters. Meanwhile, the expression of CRISP2 in boar reproductive organs and sperm, and the effects of CRISP2 on in vitro fertilization (IVF) were examined. The results showed that boars with high sperm levels of CRISP2 had high fertility. The protein levels of CRISP2 in sperm were positively correlated with the litter size (r = 0.412, p = 0.026), the number of live-born piglets (r = 0.421, p = 0.023) and the qualified piglets per litter (r = 0.381, p = 0.042). CRISP2 is specifically expressed in the testis and sperm of adult boars, and its location on sperm changed mainly from the post-acrosomal region to the apical segment of acrosome during capacitation. The cleavage rate was significantly decreased by adding the anti-CRISP2 antibody to the IVF medium, which indicates CRISP2 plays a critical role in fertilization. In conclusion, CRISP2 protein is specifically expressed in the adult testis and sperm and is associated with sperm fertilizing ability and boar fertility. Further mechanistic studies are warranted, in order to fully decipher the role of CRISP2 in the boar reproduction.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
S. Memmert ◽  
A. Damanaki ◽  
A. V. B. Nogueira ◽  
S. Eick ◽  
M. Nokhbehsaim ◽  
...  

Cathepsin S is a cysteine protease and regulator of autophagy with possible involvement in periodontitis. The objective of this study was to investigate whether cathepsin S is involved in the pathogenesis of periodontal diseases. Human periodontal fibroblasts were cultured under inflammatory and infectious conditions elicited by interleukin-1β and Fusobacterium nucleatum, respectively. An array-based approach was used to analyze differential expression of autophagy-associated genes. Cathepsin S was upregulated most strongly and thus further studied in vitro at gene and protein levels. In vivo, gingival tissue biopsies from rats with ligature-induced periodontitis and from periodontitis patients were also analyzed at transcriptional and protein levels. Multiple gene expression changes due to interleukin-1β and F. nucleatum were observed in vitro. Both stimulants caused a significant cathepsin S upregulation. A significantly elevated cathepsin S expression in gingival biopsies from rats with experimental periodontitis was found in vivo, as compared to that from control. Gingival biopsies from periodontitis patients showed a significantly higher cathepsin S expression than those from healthy gingiva. Our findings provide original evidence that cathepsin S is increased in periodontal cells and tissues under inflammatory and infectious conditions, suggesting a critical role of this autophagy-associated molecule in the pathogenesis of periodontitis.


Author(s):  
María Milagros Giaccagli ◽  
Matías Daniel Gómez-Elías ◽  
Jael Dafne Herzfeld ◽  
Clara Isabel Marín-Briggiler ◽  
Patricia Sara Cuasnicú ◽  
...  

To become fully competent to fertilize an egg, mammalian sperm undergo a series of functional changes within the female tract, known as capacitation, that require an adequate supply and management of energy. However, the contribution of each ATP generating pathway to sustain the capacitation-associated changes remains unclear. Based on this, we investigated the role of mitochondrial activity in the acquisition of sperm fertilizing ability during capacitation in mice. For this purpose, the dynamics of the mitochondrial membrane potential (MMP) was studied by flow cytometry with the probe tetramethylrhodamine ethyl ester (TMRE). We observed a time-dependent increase in MMP only in capacitated sperm as well as a specific staining with the probe in the flagellar region where mitochondria are confined. The MMP rise was prevented when sperm were exposed to the mitochondrial uncoupler carbonyl cyanide m-chlorophenyl hydrazine (CCCP) or the protein kinase A (PKA) inhibitor H89 during capacitation, indicating that MMP increase is dependent on capacitation and H89-sensitive events. Results showed that whereas nearly all motile sperm were TMRE positive, immotile cells were mostly TMRE negative, supporting an association between high MMP and sperm motility. Furthermore, CCCP treatment during capacitation did not affect PKA substrate and tyrosine phosphorylations but produced a decrease in hyperactivation measured by computer assisted sperm analysis (CASA), similar to that observed after H89 exposure. In addition, CCCP inhibited the in vitro sperm fertilizing ability without affecting cumulus penetration and gamete fusion, indicating that the hyperactivation supported by mitochondrial function is needed mainly for zona pellucida penetration. Finally, complementary in vivo fertilization experiments further demonstrated the fundamental role of mitochondrial activity for sperm function. Altogether, our results show the physiological relevance of mitochondrial functionality for sperm fertilization competence.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Xia Liao ◽  
Yang Bu ◽  
Fan Chang ◽  
Fengan Jia ◽  
Ge Song ◽  
...  

Abstract Background Hepatic stellate cells (HSCs) have a key role in fibrogenesis and in the filtrates of the hepatocellular carcinoma (HCC) stroma, in which they are remodeled and play a critical role in HCC progression. However, the precise role of HSCs trending, infiltration and paracrine in orchestrating the stroma-derived oxaliplatin-resistance in HCC is still vague. Methods The chemo-resistant models were established to explore the correlation between HSC cells and the condition of chemoresistance. The HCC clinical samples were collected to confirm this phenomenon. Then, the relationship between secretory CCN3 from oxaliplatin-resistant HCC and the infiltration of HSCs in associated HCC microenvironment was evaluated. Finally, the role and mechanism of HSCs remodeling in the orchestration of oxaliplatin-resistant HCC were explored. Results The increased infiltration of HSCs and collagen accumulation were found in the microenvironment of oxaliplatin-resistant HCC. The cDNA profiles of the oxaliplatin-resistant HCC was reanalyzed, and CCN3 was one of the significantly increased genes. In HCC clinical samples, the levels of CCN3 and α-SMA are positively correlated, and high expression of CCN3 and α-SMA are positively associated with malignant phenotype and poor prognosis. Then the enhanced abilities of migration and proliferation of HSCs, and elevation of the cytokines paracrine from HSCs relating to HCC malignancy were proved in vitro and in vivo, and which were related to CCN3-ERK signaling pathway activation. Conclusions HSCs remodeling are positively related to CCN3 paracrine in hepatocellular carcinoma, which orchestrated the stroma-derived resistance to chemotherapy in HCC.


2021 ◽  
Vol 16 (1) ◽  
pp. 375-383
Author(s):  
Yi Duan ◽  
Yuanyuan Meng ◽  
Zhifeng Gao ◽  
Xiaoyu Wang ◽  
Huan Zhang

Abstract Background Maintenance of the function and survival of liver sinusoidal endothelial cells (LSECs) play a crucial role in hepatic ischemia/reperfusion (I/R) injury, a major cause of liver impairment during the surgical treatment. Emerging evidence indicates a critical role of microRNAs in I/R injury. This study aims to investigate whether miR-9-5p exerts a protective effect on LSECs. Methods We transfected LSECs with miR-9-5p mimic or mimic NC. LSECs were treated with oxygen and glucose deprivation (OGD, 5% CO2, and 95% N2), followed by glucose-free Dulbecco’s modified Eagle’s medium (DMEM) medium for 6 h and high glucose (HG, 30 mmol/L glucose) DMEM medium for 12 h. The biological role of miR-9-5p in I/R-induced LSEC injury was determined. Results In the in vitro model of OGD/HG injury in LSECs, the expression levels of miR-9-5p were significantly downregulated, and those of CXC chemokine receptor-4 (CXCR4) upregulated. LSEC I/R injury led to deteriorated cell death, enhanced oxidative stress, and excessive inflammatory response. Mechanistically, we showed that miR-9-5p overexpression significantly downregulated both mRNA and protein levels of CXCR4, followed by the rescue of LSECs, ameliorated inflammatory response, and deactivation of pro-apoptotic signaling pathways. Conclusions miR-9-5p promotes LSEC survival and inhibits apoptosis and inflammatory response in LSECs following OGD/HG injury via downregulation of CXCR4.


Author(s):  
Ann Kinga Malinowski

AbstractAlongside an interplay of a multitude of factors, attainment of a favorable pregnancy outcome is predicated on successful implantation, which in itself is a complex process anchored by balanced interchange with the hemostatic system. Among other etiologies, failure of implantation can result in infertility, and lead affected couples to consider assisted reproductive technology (ART) in an effort to fulfill their desire for procreation. Given the critical role of the hemostatic system in the process of implantation, documentation of a hypercoagulable state during controlled ovarian stimulation in the context of in vitro fertilization, as well as the potential association of its derangement in the setting of thrombophilia, with infertility, ART, ovarian hyperstimulation syndrome, and failure of implantation are explored. Additionally, current evidence addressing the relationship between ART and thromboembolism is examined, as is the role of therapy with heparin and aspirin to decrease thrombotic risk and improve ART-related pregnancy outcomes. Evidence-based recommendations from relevant professional societies are summarized.


2020 ◽  
Author(s):  
Yadong Luo ◽  
Huan Ji ◽  
Yan Cao ◽  
Xu Ding ◽  
Meng Li ◽  
...  

Abstract Background: Our study was designed to investigate the role of miR-26b-5p on TCF-4, affecting the adipogenic differentiation of human adipose-derived mesenchymal stem cells (hADMSCs). METHODS: The adipogenic differentiation of hADMSCs was induced by adipogenic medium for 6 days (d). Bioinformatic and dual-luciferase analyses were used to confirm the relationship between TCF-4 and miR-26b-5p. Immunofluorescence was used to detect the effect of miR-26b-5p on TCF-4 and β-catenin in hADMSCs transfected with miR-26b-5p mimic and inhibitor. Mimic, inhibitor, and small interfering RNA (siRNA) transfected in hADMSCs to against LEF1 and β-catenin. Quantitative real-time PCR and western blotting were used to examine the adipogenic markers and Wnt/β-catenin pathway at the mRNA and protein levels, respectively. Immunofluorescence was performed to locate β-catenin. RESULTS: hADMSCs could differentiate toward adipocytes by the adipogenic medium. The results of bioinformatic and dual-luciferase analyses show that TCF-4 is a potential target of miR-26b-5p. The immunofluorescence intensity of TCF4 and β-catenin were inhibited by miR-26b-5p in hADMSCs. Overexpression of miR-26b-5p promotes the adipogenic differentiation of hADMSCs. Overexpression of TCF-4 and β-catenin inhibits the adipogenic differentiation of hADMSCs. The adipogenic differentiation of hADMSCs that promoted by knocking down TCF4 could be weakened by low-expression of miR-26b-5p. The stimulative effect of β-catenin low-expression in adipogenic differentiation was inhibited by miR-26b-5p inhibitor. Conclusions: miR-26b-5p is a negative regulator to inhibit TCF-4 directly, and then inactivated Wnt/β-catenin pathway, which promotes the adipogenic differentiation of hADMSCs in vitro.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2999
Author(s):  
Deborah Reynaud ◽  
Roland Abi Nahed ◽  
Nicolas Lemaitre ◽  
Pierre-Adrien Bolze ◽  
Wael Traboulsi ◽  
...  

The inflammatory gene NLRP7 is the major gene responsible for recurrent complete hydatidiform moles (CHM), an abnormal pregnancy that can develop into gestational choriocarcinoma (CC). However, the role of NLRP7 in the development and immune tolerance of CC has not been investigated. Three approaches were employed to define the role of NLRP7 in CC development: (i) a clinical study that analyzed human placenta and sera collected from women with normal pregnancies, CHM or CC; (ii) an in vitro study that investigated the impact of NLRP7 knockdown on tumor growth and organization; and (iii) an in vivo study that used two CC mouse models, including an orthotopic model. NLRP7 and circulating inflammatory cytokines were upregulated in tumor cells and in CHM and CC. In tumor cells, NLRP7 functions in an inflammasome-independent manner and promoted their proliferation and 3D organization. Gravid mice placentas injected with CC cells invalidated for NLRP7, exhibited higher maternal immune response, developed smaller tumors, and displayed less metastases. Our data characterized the critical role of NLRP7 in CC and provided evidence of its contribution to the development of an immunosuppressive maternal microenvironment that not only downregulates the maternal immune response but also fosters the growth and progression of CC.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yi Xin She ◽  
Qing Yang Yu ◽  
Xiao Xiao Tang

AbstractInterleukins, a group of cytokines participating in inflammation and immune response, are proved to be involved in the formation and development of pulmonary fibrosis. In this article, we reviewed the relationship between interleukins and pulmonary fibrosis from the clinical, animal, as well as cellular levels, and discussed the underlying mechanisms in vivo and in vitro. Despite the effects of interleukin-targeted treatment on experimental pulmonary fibrosis, clinical applications are lacking and unsatisfactory. We conclude that intervening in one type of interleukins with similar functions in IPF may not be enough to stop the development of fibrosis as it involves a complex network of regulation mechanisms. Intervening interleukins combined with other existing therapy or targeting interleukins affecting multiple cells/with different functions at the same time may be one of the future directions. Furthermore, the intervention time is critical as some interleukins play different roles at different stages. Further elucidation on these aspects would provide new perspectives on both the pathogenesis mechanism, as well as the therapeutic strategy and drug development.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Brianna J. Klein ◽  
Anagha Deshpande ◽  
Khan L. Cox ◽  
Fan Xuan ◽  
Mohamad Zandian ◽  
...  

AbstractChromosomal translocations of the AF10 (or MLLT10) gene are frequently found in acute leukemias. Here, we show that the PZP domain of AF10 (AF10PZP), which is consistently impaired or deleted in leukemogenic AF10 translocations, plays a critical role in blocking malignant transformation. Incorporation of functional AF10PZP into the leukemogenic CALM-AF10 fusion prevents the transforming activity of the fusion in bone marrow-derived hematopoietic stem and progenitor cells in vitro and in vivo and abrogates CALM-AF10-mediated leukemogenesis in vivo. Crystallographic, biochemical and mutagenesis studies reveal that AF10PZP binds to the nucleosome core particle through multivalent contacts with the histone H3 tail and DNA and associates with chromatin in cells, colocalizing with active methylation marks and discriminating against the repressive H3K27me3 mark. AF10PZP promotes nuclear localization of CALM-AF10 and is required for association with chromatin. Our data indicate that the disruption of AF10PZP function in the CALM-AF10 fusion directly leads to transformation, whereas the inclusion of AF10PZP downregulates Hoxa genes and reverses cellular transformation. Our findings highlight the molecular mechanism by which AF10 targets chromatin and suggest a model for the AF10PZP-dependent CALM-AF10-mediated leukemogenesis.


2021 ◽  
Vol 22 (9) ◽  
pp. 4370
Author(s):  
Cássia de Fáveri ◽  
Paula M. Poeta Fermino ◽  
Anna P. Piovezan ◽  
Lia K. Volpato

The pathogenesis of endometriosis is still controversial, although it is known that the inflammatory immune response plays a critical role in this process. The resolution of inflammation is an active process where the activation of endogenous factors allows the host tissue to maintain homeostasis. The mechanisms by which pro-resolving mediators (PRM) act in endometriosis are still little explored. Thus, this integrative review aims to synthesize the available content regarding the role of PRM in endometriosis. Experimental and in vitro studies with Lipoxin A4 demonstrate a potential inhibitory effect on endometrial lesions’ progression, attenuating pro-inflammatory and angiogenic signals, inhibiting proliferative and invasive action suppressing intracellular signaling induced by cytokines and estradiol, mainly through the FPR2/ALX. Investigations with Resolvin D1 demonstrated the inhibition of endometrial lesions and decreased pro-inflammatory factors. Annexin A1 is expressed in the endometrium and is specifically present in women with endometriosis, although the available studies are still inconsistent. Thus, we believe there is a gap in knowledge regarding the PRM pathways in patients with endometriosis. It is important to note that these substances’ therapeutic potential is evident since the immune and abnormal inflammatory responses play an essential role in endometriosis development and progression.


Sign in / Sign up

Export Citation Format

Share Document