Investigation of leading edge formation at the interface of amnioserosa and dorsal ectoderm in theDrosophilaembryo

Development ◽  
2001 ◽  
Vol 128 (15) ◽  
pp. 2905-2913 ◽  
Author(s):  
Beth E. Stronach ◽  
Norbert Perrimon

The leading edge (LE) is a single row of cells in the Drosophila embryonic epidermis that marks the boundary between two fields of cells: the amnioserosa and the dorsal ectoderm. LE cells play a crucial role in the morphogenetic process of dorsal closure and eventually form the dorsal midline of the embryo. Mutations that block LE differentiation result in a failure of dorsal closure and embryonic lethality. How LE cells are specified remains unclear. To explore whether LE cells are specified in response to early dorsoventral patterning information or whether they arise secondarily, we have altered the extent of amnioserosa and dorsal ectoderm genetically, and assayed LE cell fate. We did not observe an expansion of LE fate in dorsalized or ventralized mutants. Furthermore, we observed that the LE fate arises as a single row of cells, wherever amnioserosa tissue and dorsal epidermis are physically juxtaposed. Taken together our data indicate that LE formation is a secondary consequence of early zygotic dorsal patterning signals. In particular, proper LE specification requires the function of genes such as u-shaped and hindsight, which are direct transcriptional targets of the early Decapentaplegic/Screw patterning gradient, to establish a competency zone from which LE arises. We propose that subsequent inductive signaling between amnioserosa and dorsal ectoderm restricts the formation of LE to a single row of cells.

2000 ◽  
Vol 14 (5) ◽  
pp. 604-614
Author(s):  
Rafael Fernandez ◽  
Fumitaka Takahashi ◽  
Zhao Liu ◽  
Ruth Steward ◽  
David Stein ◽  
...  

Dorsal closure (DC) in the Drosophila embryo requires the coordinated interaction of two different functional domains of the epidermal cell layer—the leading edge (LE) and the lateral epidermis. In response to activation of a conserved c-Jun amino-terminal kinase (JNK) signaling module, the dorsal-most layer of cells, which constitute the LE of the stretching epithelial sheet, secrete Dpp, a member of the TGFβ superfamily. Dpp and other LE cell-derived signaling molecules stimulate the bilateral dorsal elongation of cells of the dorsolateral epidermis over the underlaying amnioserosa and the eventual fusion of their LEs along the dorsal midline. We have found that flies bearing a Shark tyrosine kinase gene mutation,shark1, exhibit a DC-defective phenotype. Dpp fails to be expressed in shark1 mutant LE cells. Consistent with these observations, epidermal-specific reconstitution ofshark function or overexpression of an activated form of c-Jun in the shark1 mutant background, rescues the DC defect. Thus, Shark regulates the JNK signaling pathway leading to Dpp expression in LE cells. Furthermore, constitutive activation of the Dpp pathway throughout the epidermis fails to rescue theshark1 DC defect, suggesting that Shark may function in additional pathways in the LE and/or lateral epithelium.


2011 ◽  
Vol 192 (2) ◽  
pp. 335-348 ◽  
Author(s):  
Caroline Laplante ◽  
Laura A. Nilson

During Drosophila melanogaster dorsal closure, lateral sheets of embryonic epidermis assemble an actomyosin cable at their leading edge and migrate dorsally over the amnioserosa, converging at the dorsal midline. We show that disappearance of the homophilic cell adhesion molecule Echinoid (Ed) from the amnioserosa just before dorsal closure eliminates homophilic interactions with the adjacent dorsal-most epidermal (DME) cells, which comprise the leading edge. The resulting planar polarized distribution of Ed in the DME cells is essential for the localized accumulation of actin regulators and for actomyosin cable formation at the leading edge and for the polarized localization of the scaffolding protein Bazooka/PAR-3. DME cells with uniform Ed fail to assemble a cable and protrude dorsally, suggesting that the cable restricts dorsal migration. The planar polarized distribution of Ed in the DME cells thus provides a spatial cue that polarizes the DME cell actin cytoskeleton, defining the epidermal leading edge and establishing its contractile properties.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0239357
Author(s):  
Junior J. West ◽  
Tony J. C. Harris

Cytohesin Arf-GEFs promote actin polymerization and protrusions of cultured cells, whereas the Drosophila cytohesin, Steppke, antagonizes actomyosin networks in several developmental contexts. To reconcile these findings, we analyzed epidermal leading edge actin networks during Drosophila embryo dorsal closure. Here, Steppke is required for F-actin of the actomyosin cable and for actin-based protrusions. steppke mutant defects in the leading edge actin networks are associated with improper sealing of the dorsal midline, but are distinguishable from effects of myosin mis-regulation. Steppke localizes to leading edge cell-cell junctions with accumulations of the F-actin regulator Enabled emanating from either side. Enabled requires Steppke for full leading edge recruitment, and genetic interaction shows the proteins cooperate for dorsal closure. Inversely, Steppke over-expression induces ectopic, actin-rich, lamellar cell protrusions, an effect dependent on the Arf-GEF activity and PH domain of Steppke, but independent of Steppke recruitment to myosin-rich AJs via its coiled-coil domain. Thus, Steppke promotes actin polymerization and cell protrusions, effects that occur in conjunction with Steppke’s previously reported regulation of myosin contractility during dorsal closure.


Development ◽  
2000 ◽  
Vol 127 (16) ◽  
pp. 3607-3617 ◽  
Author(s):  
D.G. McEwen ◽  
R.T. Cox ◽  
M. Peifer

Elaboration of the Drosophila body plan depends on a series of cell-identity decisions and morphogenetic movements regulated by intercellular signals. For example, Jun N-terminal kinase signaling regulates cell fate decisions and morphogenesis during dorsal closure, while Wingless signaling regulates segmental patterning of the larval cuticle via Armadillo. wingless or armadillo mutant embryos secrete a lawn of ventral denticles; armadillo mutants also exhibit dorsal closure defects. We found that mutations in puckered, a phosphatase that antagonizes Jun N-terminal kinase, suppress in a dose-sensitive manner both the dorsal and ventral armadillo cuticle defects. Furthermore, we found that activation of the Jun N-terminal kinase signaling pathway suppresses armadillo-associated defects. Jun N-terminal kinase signaling promotes dorsal closure, in part, by regulating decapentaplegic expression in the dorsal epidermis. We demonstrate that Wingless signaling is also required to activate decapentaplegic expression and to coordinate cell shape changes during dorsal closure. Together, these results demonstrate that MAP-Kinase and Wingless signaling cooperate in both the dorsal and ventral epidermis, and suggest that Wingless may activate both the Wingless and the Jun N-terminal kinase signaling cascades.


2020 ◽  
Author(s):  
Ana Krotenberg Garcia ◽  
Arianna Fumagalli ◽  
Huy Quang Le ◽  
Owen J. Sansom ◽  
Jacco van Rheenen ◽  
...  

AbstractCompetitive cell-interactions play a crucial role in quality control during development and homeostasis. Here we show that cancer cells use such interactions to actively eliminate wild-type intestine cells in enteroid monolayers and organoids. This apoptosis-dependent process boosts proliferation of intestinal cancer cells. The remaining wild-type population activates markers of primitive epithelia and transits to a fetal-like state. Prevention of this cell fate transition avoids elimination of wild-type cells and, importantly, limits the proliferation of cancer cells. JNK signalling is activated in competing cells and is required for cell fate change and elimination of wild-type cells. Thus, cell competition drives growth of cancer cells by active out-competition of wild-type cells through forced cell death and cell fate change in a JNK dependent manner.


2015 ◽  
Author(s):  
Pei-Shan Wang ◽  
Fu-Sheng Chou ◽  
Fengli Guo ◽  
Praveen Suraneni ◽  
Sheng Xia ◽  
...  

The polarity and organization of radial glial cells (RGCs), which serve as both stem cells and scaffolds for neuronal migration, are crucial for cortical development. However, the cytoskeletal mechanisms that drive radial glial outgrowth and maintain RGC polarity remain poorly understood. Here, we show that the Arp2/3 complex, the unique actin nucleator that produces branched actin networks, plays essential roles in RGC polarity and morphogenesis. Disruption of the Arp2/3 complex in RGCs retards process outgrowth toward the basal surface and impairs apical polarity and adherens junctions. Whereas the former is correlated with abnormal actin-based leading edge, the latter is consistent with blockage in membrane trafficking. These defects result in altered cell fate, disrupted cortical lamination and abnormal angiogenesis. In addition, we present evidence that the Arp2/3 complex is a cell-autonomous regulator of neuronal migration. Our data suggest that Arp2/3-mediated actin assembly may be particularly important for neuronal cell motility in soft or poorly adhesive matrix environment.


Development ◽  
2001 ◽  
Vol 128 (17) ◽  
pp. 3253-3261 ◽  
Author(s):  
Nirupama Deshpande ◽  
Rainer Dittrich ◽  
Gerhard M. Technau ◽  
Joachim Urban

The Drosophila central nervous system derives from neural precursor cells, the neuroblasts (NBs), which are born from the neuroectoderm by the process of delamination. Each NB has a unique identity, which is revealed by the production of a characteristic cell lineage and a specific set of molecular markers it expresses. These NBs delaminate at different but reproducible time points during neurogenesis (S1-S5) and it has been shown for early delaminating NBs (S1/S2) that their identities depend on positional information conferred by segment polarity genes and dorsoventral patterning genes. We have studied mechanisms leading to the fate specification of a set of late delaminating neuroblasts, NB 6-4 and NB 7-3, both of which arise from the engrailed (en) expression domain, with NB 6-4 delaminating first. In contrast to former reports, we did not find any evidence for a direct role of hedgehog in the process of NB 7-3 specification. Instead, we present evidence to show that the interplay of the segmentation genes naked cuticle (nkd) and gooseberry (gsb), both of which are targets of wingless (wg) activity, leads to differential commitment to NB 6-4 and NB 7-3 cell fate. In the absence of either nkd or gsb, one NB fate is replaced by the other. However, the temporal sequence of delamination is maintained, suggesting that formation and specification of these two NBs are under independent control.


Development ◽  
1992 ◽  
Vol 116 (2) ◽  
pp. 335-346 ◽  
Author(s):  
M. Freeman ◽  
B.E. Kimmel ◽  
G.M. Rubin

In order to identify potential target genes of the rough homeodomain protein, which is known to specify some aspects of the R2/R5 photoreceptor subtype in the Drosophila eye, we have carried out a search for enhancer trap lines whose expression is rough-dependent. We crossed 101 enhancer traps that are expressed in the developing eye into a rough mutant background, and have identified seven lines that have altered expression patterns. One of these putative rough target genes is rhomboid, a gene known to be required for dorsoventral patterning and development of some of the nervous system in the embryo. We have examined the role of rhomboid in eye development and find that, while mutant clones have only a subtle phenotype, ectopic expression of the gene causes the non-neuronal mystery cells to be transformed into photoreceptors. We propose that rhomboid is a part of a partially redundant network of genes that specify photoreceptor cell fate.


Development ◽  
1997 ◽  
Vol 124 (12) ◽  
pp. 2335-2344 ◽  
Author(s):  
J.C. Corbo ◽  
A. Erives ◽  
A. Di Gregorio ◽  
A. Chang ◽  
M. Levine

The notochord and dorsal ectoderm induce dorsoventral compartmentalization of the vertebrate neural tube through the differential regulation of genes such as HNF-3beta, Pax3, Pax6 and snail. Here we analyze the expression of HNF-3beta and snail homologues in the ascidian, Ciona intestinalis, a member of the subphylum Urochordata, the earliest branch in the chordate phylum. A combination of in situ hybridization and promoter fusion analyses was used to demonstrate that the Ciona HNF-3beta homologue is expressed in the ventralmost ependymal cells of the neural tube, while the Ciona snail homologue is expressed at the junction between the invaginating neuroepithelium and dorsal ectoderm, similar to the patterns seen in vertebrates. These findings provide evidence that dorsoventral compartmentalization of the chordate neural tube is not an innovation of the vertebrates. We propose that precursors of the floor plate and neural crest were present in a common ancestor of both vertebrates and ascidians.


Author(s):  
Daniel R. Carroll ◽  
Paul I. King ◽  
James L. Rutledge

A water channel study was conducted on a cylindrical leading edge model of a film-cooled turbine blade to assess the effects of surface modifications on film spreading. A single radial coolant hole located 21.5° from the stagnation line, angled 20° to the surface and 90° to the flow direction supplied dyed coolant flow. Surface modifications included a variety of dimples upstream and downstream of the coolant hole and transverse trenches milled coincident with the coolant hole. Compared to the unmodified surface, a single row of small cylindrical or spherical dimples upstream of the coolant hole steadies the jet at blowing ratios up to M = 0.75. Medium and large spherical dimples downstream of the coolant hole have a similar effect, but none of the dimple geometries studied affect the coolant jet above M = 0.75. A single-depth, square-edged transverse trench spreads the coolant spanwise, increasing the coverage of a single coolant hole more than two times. This trench suffers from coolant blow-out above M = 0.50, but a deeper, tapered-depth trench entrains and spreads the coolant very effectively at blowing ratios above M = 0.50. The tapered trench prevents jet liftoff and is the only geometry studied that holds the coolant closer to the surface than the unmodified coolant hole.


Sign in / Sign up

Export Citation Format

Share Document