scholarly journals Bacterial Nanocellulose Fortified with Antimicrobial and Anti-Inflammatory Natural Products from Chelidonium majus Plant Cell Cultures

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 16
Author(s):  
Sylwia Zielińska ◽  
Adam Matkowski ◽  
Karolina Dydak ◽  
Monika Ewa Czerwińska ◽  
Magdalena Dziągwa-Becker ◽  
...  

In this work we developed a bi-functional Bacterial-Nano-Cellulose (BNC) carrier system for cell cultures of Chelidonium majus—a medicinal plant producing antimicrobial compounds. The porous BNC was biosynthesized for 3, 5 or 7 days by the non-pathogenic Komagataeibacter xylinus bacteria and used in three forms: (1) Without removal of K. xylinus cells, (2) partially cleaned up from the remaining K. xylinus cells using water washing and (3) fully purified with NaOH leaving no bacterial cells remains. The suspended C. majus cells were inoculated on the BNC pieces in liquid medium and the functionalized BNC was harvested and subjected to scanning electron microscopy observation and analyzed for the content of C. majus metabolites as well as to antimicrobial assays and tested for potential proinflammatory irritating activity in human neutrophils. The highest content and the most complex composition of pharmacologically active substances was found in 3-day-old, unpurified BNC, which was tested for its bioactivity. The assays based on the IL-1β, IL-8 and TNF-α secretion in an in vitro model showed an anti-inflammatory effect of this particular biomatrix. Moreover, 3-day-old-BNC displayed antimicrobial and antibiofilm activity against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. The results of the research indicated a possible application of such modified composites, against microbial pathogens, especially in local surface infections, where plant metabolite-enriched BNC may be used as the occlusive dressing.

Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3382 ◽  
Author(s):  
Chi-Lung Yang ◽  
Ho-Cheng Wu ◽  
Tsong-Long Hwang ◽  
Chu-Hung Lin ◽  
Yin-Hua Cheng ◽  
...  

One new dibenzocycloheptene, validinol (1), and one butanolide firstly isolated from the natural source, validinolide (2), together with 17 known compounds were isolated from the stem of Cinnamomum validinerve. Among the isolates, lincomolide A (3), secosubamolide (7), and cinnamtannin B1 (19) exhibited potent inhibition on both superoxide anion generation (IC50 values of 2.98 ± 0.3 µM, 4.37 ± 0.38 µM, and 2.20 ± 0.3 µM, respectively) and elastase release (IC50 values of 3.96 ± 0.31 µM, 3.04 ± 0.23 µM, and 4.64 ± 0.71 µM, respectively) by human neutrophils. In addition, isophilippinolide A (6), secosubamolide (7), and cinnamtannin B1 (19) showed bacteriostatic effects against Propionibacterium acnes in in vitro study, with minimal inhibitory concentration (MIC) values at 16 μg/mL, 16 μg/mL, and 500 μg/mL, respectively. Further investigations using the in vivo ear P. acnes infection model showed that the intraperitoneal administration of the major component cinnamtannin B1 (19) reduced immune cell infiltration and pro-inflammatory cytokines TNF-α and IL-6 at the infection sites. The results demonstrated the potential of cinnamtannin B1 (19) for acne therapy. In summary, these results demonstrated the anti-inflammatory potentials of Formosan C. validinerve during bacterial infections.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Emanuela Mesquita Porfírio ◽  
Hider Machado Melo ◽  
Antônio Matheus Gomes Pereira ◽  
Theodora Thays Arruda Cavalcante ◽  
Geovany Amorim Gomes ◽  
...  

In vitro antimicrobial and antibiofilm activities of the Lippia alba essential oil and its major components (citral and carvone) against Staphylococcus aureus were investigated. Essential oils (LA1EO, LA2EO, and LA3EO) were extracted from the aerial parts of three L. alba specimens by hydrodistillation and analyzed by gas chromatography coupled to a mass spectrometer. Minimum Inhibitory Concentrations (MIC) and Minimum Bacterial Concentration (MBC) were determined by the microdilution method. For the antibiofilm assays, the biomass formation in the biofilm was evaluated by the microtiter-plate technique with the crystal violet (CV) assay and the viability of the bacterial cells was analyzed. All oils and their major components presented antibacterial activity, and the lowest MIC and MBC values were 0.5 mg mL−1 when LA1EO and citral were used. Potential inhibition (100%) of S. aureus biofilm formation at the concentration of 0.5 mg mL−1 of all EOs was observed. However, the elimination of biofilm cells was confirmed at concentrations of 1 mg mL−1, 2 mg mL−1, 2 mg mL−1, and 0.5 mg mL−1 for LA1EO, LA2EO, LA3EO, and citral, respectively. The results obtained in the present research point to the promising antibacterial and antibiofilm potential of L. alba EOs against S. aureus, a species of recognized clinical interest.


2020 ◽  
Vol 250 ◽  
pp. 112474 ◽  
Author(s):  
José Joaquim Lopes Neto ◽  
Thiago Silva de Almeida ◽  
Luiz Carlos Pereira Almeida Filho ◽  
Talita Magalhães Rocha ◽  
Pablo Andrei Nogara ◽  
...  

mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Chiguang Feng ◽  
Jihong Li ◽  
Greg Snyder ◽  
Wei Huang ◽  
Simeon E. Goldblum ◽  
...  

ABSTRACT Neuraminidases (NAs) are critical virulence factors for several microbial pathogens. With a highly conserved catalytic domain, a microbial NA “superfamily” has been proposed. We previously reported that murine polymorphonuclear leukocyte (PMN) sialidase activity was important in leukocyte trafficking to inflamed sites and that antibodies to Clostridium perfringens NA recognized a cell surface molecule(s), presumed to be a sialidase of eukaryotic origin on interleukin-8-stimulated human and murine PMNs. These antibodies also inhibited cell sialidase activity both in vitro and, in the latter instance, in vivo . We therefore hypothesized that mammalian sialidases share structural homology and epitopes with microbial NAs. We now report that antibodies to one of the isoforms of C. perfringens NA, as well as anti-influenza virus NA serum, recognize human NEU3 but not NEU1 and that antibodies to C. perfringens NA inhibit NEU3 enzymatic activity. We conclude that the previously described microbial NA superfamily extends to human sialidases. Strategies designed to therapeutically inhibit microbial NA may need to consider potential compromising effects on human sialidases, particularly those expressed in cells of the immune system. IMPORTANCE We previously reported that sialidase activity of human neutrophils plays a critical role in the host inflammatory response. Since the catalytic domains of microbial neuraminidases are highly conserved, we hypothesized that antibodies against Clostridium perfringens neuraminidase might inhibit mammalian sialidase activity. Before the recognition of four mammalian sialidase ( Neu ) isoforms, we demonstrated that anti- C. perfringens neuraminidase antibodies inhibited human and murine sialidase activity in vivo and in vitro . We now show that the antibodies to microbial neuraminidase ( C. perfringens and influenza virus) recognize human NEU3, which is important for neural development and cell signaling. Since many microbes that infect mucosal surfaces express neuraminidase, it is possible that the use of sialidase inhibitors (e.g., zanamivir), might also compromise human sialidase activity critical to the human immune response. Alternatively, sialidase inhibitors may prove useful in the treatment of hyperinflammatory conditions.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
A. J. Theron ◽  
H. C. Steel ◽  
G. R. Tintinger ◽  
C. M. Gravett ◽  
R. Anderson ◽  
...  

Cysteinyl leukotrienes (cysLTs) are produced predominantly by cells of the innate immune system, especially basophils, eosinophils, mast cells, and monocytes/macrophages. Notwithstanding potent bronchoconstrictor activity, cysLTs are also proinflammatory consequent to their autocrine and paracrine interactions with G-protein-coupled receptors expressed not only on the aforementioned cell types, but also on Th2 lymphocytes, as well as structural cells, and to a lesser extent neutrophils and CD8+cells. Recognition of the involvement of cysLTs in the immunopathogenesis of various types of acute and chronic inflammatory disorders, especially bronchial asthma, prompted the development of selective cysLT receptor-1 (cysLTR1) antagonists, specifically montelukast, pranlukast, and zafirlukast. More recently these agents have also been reported to possess secondary anti-inflammatory activities, distinct from cysLTR1 antagonism, which appear to be particularly effective in targeting neutrophils and monocytes/macrophages. Underlying mechanisms include interference with cyclic nucleotide phosphodiesterases, 5′-lipoxygenase, and the proinflammatory transcription factor, nuclear factor kappa B. These and other secondary anti-inflammatory mechanisms of the commonly used cysLTR1 antagonists are the major focus of the current review, which also includes a comparison of the anti-inflammatory effects of montelukast, pranlukast, and zafirlukast on human neutrophilsin vitro, as well as an overview of both the current clinical applications of these agents and potential future applications based on preclinical and early clinical studies.


2012 ◽  
Vol 79 (4) ◽  
pp. 1221-1231 ◽  
Author(s):  
Valentina Taverniti ◽  
Milda Stuknyte ◽  
Mario Minuzzo ◽  
Stefania Arioli ◽  
Ivano De Noni ◽  
...  

ABSTRACTThe ability to positively affect host health through the modulation of the immune response is a feature of increasing importance in measuring the probiotic potential of a bacterial strain. However, the identities of the bacterial cell components involved in cross talk with immune cells remain elusive. In this study, we characterized the dairy strainLactobacillus helveticusMIMLh5 and its surface-layer protein (SlpA) usingin vitroandex vivoanalyses. We found that MIMLh5 and SlpA exert anti-inflammatory effects by reducing the activation of NF-κB on the intestinal epithelial Caco-2 cell line. On the contrary, MIMLh5 and SlpA act as stimulators of the innate immune system by triggering the expression of proinflammatory factors tumor necrosis factor alpha and COX-2 in the human macrophage cell line U937 via recognition through Toll-like receptor 2. In the same experiments, SlpA protein did not affect the expression of the anti-inflammatory cytokine interleukin-10. A similar response was observed following stimulation of macrophages isolated from mouse bone marrow or the peritoneal cavity. These results suggest that SlpA plays a major role in mediating bacterial immune-stimulating activity, which could help to induce the host's defenses against and responses toward infections. This study supports the concept that the viability of bacterial cells is not always essential to exert immunomodulatory effects, thus permitting the development of safer therapies for the treatment of specific diseases according to a paraprobiotic intervention.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4644
Author(s):  
Natalia Kłeczek ◽  
Janusz Malarz ◽  
Barbara Gierlikowska ◽  
Łukasz Skalniak ◽  
Agnieszka Galanty ◽  
...  

Carpesium divaricatum Sieb. & Zucc., a traditional medicinal plant used as an inflammation-relieving remedy, is a rich source of terpenoids. At least 40 germacrane-type sesquiterpene lactones, representatives of four different structural groups, were isolated from the plant. Cytotoxicity against cancer cells in vitro is the most frequently described biological activity of the compounds. However, little is known about the selectivity of the cytotoxic effect. The anti-inflammatory activity of the germacranolides is also poorly documented. The objective of the present study was to assess the cytotoxic activity of selected C. divaricatum germacranolides-derivatives of 4,5,8,9-tetrahydroxy-3-oxo-germacran-6,12-olide towards cancer and normal cell lines (including cells of different p53 status). Moreover, to assess the anti-inflammatory effect of the compounds, the release of four proinflammatory cytokines/chemokines (IL-1β, IL-8, TNF-α and CCL2) by lipopolysaccharide-stimulated human neutrophils was measured by ELISA. The investigated sesquiterpene lactones demonstrated nonselective activity towards prostate cancer (Du145 and PC3) and normal prostate epithelial cells (PNT2) as well as against melanoma cells (A375 and HTB140) and keratinocytes (HaCaT). Cytotoxic activity against osteosarcoma cells was independent of their p53 status. In sub-cytotoxic concentrations (0.5–2.5 µM) the studied compounds significantly decreased cytokine/chemokine release by lipopolysaccharide-stimulated human leukocytes.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1033
Author(s):  
Paweł Krzyżek ◽  
Adam Junka ◽  
Wojciech Słupski ◽  
Arleta Dołowacka-Jóźwiak ◽  
Bartosz J. Płachno ◽  
...  

Helicobacter pylori is a Gram-negative bacterium that colonizes the stomach of about 60% of people worldwide. The search for new drugs with activity against H. pylori is now a hotspot in the effective and safe control of this bacterium. Therefore, the aim of this research was to determine the antibacterial activity of extracts from selected plants of the Papaveraceae family against planktonic and biofilm forms of the multidrug-resistant clinical strain of H. pylori using a broad spectrum of analytical in vitro methods. It was revealed that among the tested extracts, those obtained from Corydalis cheilanthifolia and Chelidonium majus were the most active, with minimal inhibitory concentrations (MICs) of 64 µg/mL and 128 µg/mL, respectively. High concentrations of both extracts showed cytotoxicity against cell lines of human hepatic origin. Therefore, we attempted to lower their MICs through the use of a synergistic combination with synthetic antimicrobials as well as by applying cellulose as a drug carrier. Using checkerboard assays, we determined that both extracts presented synergistic interactions with amoxicillin (AMX) and 3-bromopyruvate (3-BP) (FICI = 0.5) and additive relationships with sertraline (SER) (FICI = 0.75). The antibiofilm activity of extracts and their combinations with AMX, 3-BP, or SER, was analyzed by two methods, i.e., the microcapillary overgrowth under flow conditions (the Bioflux system) and assessment of the viability of lawn biofilms after exposure to drugs released from bacterial cellulose (BC) carriers. Using both methods, we observed a several-fold decrease in the level of H. pylori biofilm, indicating the ability of the tested compounds to eradicate the microbial biofilm. The obtained results indicate that application of plant-derived extracts from the Papaveraceae family combined with synthetic antimicrobials, absorbed into organic BC carrier, may be considered a promising way of fighting biofilm-forming H. pylori.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Cristian Cezar Login ◽  
Ioana Bâldea ◽  
Brînduşa Tiperciuc ◽  
Daniela Benedec ◽  
Dan Cristian Vodnar ◽  
...  

Schiff bases (SBs) are chemical compounds displaying a significant pharmacological potential. They are able to modulate the activity of many enzymes involved in metabolism and are found among antibacterial, antifungal, anti-inflammatory, antioxidant, and antiproliferative drugs. A new thiazolyl-triazole SB was obtained and characterized by elemental and spectral analysis. The antibacterial and antifungal ability of the SB was evaluated against Gram-positive and Gram-negative bacteria and against three Candida strains. SB showed good antibacterial activity against L. monocytogenes and P. aeruginosa; it was two times more active than ciprofloxacin. Anti-Candida activity was twofold higher compared with that of fluconazole. The effect of the SB on cell viability was evaluated by colorimetric measurement on cell cultures exposed to various SB concentrations. The ability of the SB to modulate oxidative stress was assessed by measuring MDA, TNF-α, SOD1, COX2, and NOS2 levels in vitro, using human endothelial cell cultures exposed to a glucose-enriched medium. SB did not change the morphology of the cells. Experimental findings indicate that the newly synthetized Schiff base has antibacterial activity, especially on the Gram-negative P. aeruginosa, and antifungal activity. SB also showed antioxidant and anti-inflammatory activities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aleksandra Kruk ◽  
Jakub P. Piwowarski ◽  
Karolina A. Pawłowska ◽  
Dominik Popowski ◽  
Sebastian Granica

AbstractThe widely accepted strategy to justify the use of medicinal plant extracts in diseases with inflammatory background is their examination on in vitro models using immune cells. It is also a key initial step of research for active principles, which could be then isolated and tested on more advanced models, becoming new pharmacologically active lead molecules. The crucial aspect which has not been so far addressed in this context, is the presence of pyrogens in plant preparations. The aim of this study was the examination of pyrogens interference with in vitro evaluation of anti-inflammatory activity of plant extracts using human primary neutrophils model together with introduction of effective method of interfering factors elimination. The obtained results showed that chosen plant extracts contained pyrogens, which were responsible for concentration-dependent stimulation of pro-inflammatory cytokines production by human neutrophils in vitro in the same extent as LPS did. The ultrafiltration method was successfully applied for pyrogens elimination, which effectiveness was confirmed using LAL test. The determined interference of pyrogens implies the necessity of their consideration and removal when in vitro studies include direct addition of plant extracts to the cell culture, what can be obtained by ultrafiltration, which does not affect extract composition.


Sign in / Sign up

Export Citation Format

Share Document