scholarly journals Glycerol suppresses glucose consumption in trypanosomes through metabolic contest

PLoS Biology ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. e3001359
Author(s):  
Stefan Allmann ◽  
Marion Wargnies ◽  
Nicolas Plazolles ◽  
Edern Cahoreau ◽  
Marc Biran ◽  
...  

Microorganisms must make the right choice for nutrient consumption to adapt to their changing environment. As a consequence, bacteria and yeasts have developed regulatory mechanisms involving nutrient sensing and signaling, known as “catabolite repression,” allowing redirection of cell metabolism to maximize the consumption of an energy-efficient carbon source. Here, we report a new mechanism named “metabolic contest” for regulating the use of carbon sources without nutrient sensing and signaling. Trypanosoma brucei is a unicellular eukaryote transmitted by tsetse flies and causing human African trypanosomiasis, or sleeping sickness. We showed that, in contrast to most microorganisms, the insect stages of this parasite developed a preference for glycerol over glucose, with glucose consumption beginning after the depletion of glycerol present in the medium. This “metabolic contest” depends on the combination of 3 conditions: (i) the sequestration of both metabolic pathways in the same subcellular compartment, here in the peroxisomal-related organelles named glycosomes; (ii) the competition for the same substrate, here ATP, with the first enzymatic step of the glycerol and glucose metabolic pathways both being ATP-dependent (glycerol kinase and hexokinase, respectively); and (iii) an unbalanced activity between the competing enzymes, here the glycerol kinase activity being approximately 80-fold higher than the hexokinase activity. As predicted by our model, an approximately 50-fold down-regulation of the GK expression abolished the preference for glycerol over glucose, with glucose and glycerol being metabolized concomitantly. In theory, a metabolic contest could be found in any organism provided that the 3 conditions listed above are met.

2019 ◽  
Author(s):  
Stefan Allmann ◽  
Marion Wargnies ◽  
Edern Cahoreau ◽  
Marc Biran ◽  
Nicolas Plazolles ◽  
...  

SUMMARYMicroorganisms must make the right choice for nutrient consumption to adapt to their changing environment. As a consequence, bacteria and yeasts have developed regulatory mechanisms involving nutrient sensing and signaling, allowing to redirect cell metabolism to maximize the consumption of an energy-efficient carbon source. Here, we report a new mechanism, named “metabolic contest”, for regulating the use of carbon sources without nutrient sensing and signaling. In contrast to most microorganisms, trypanosomes show a glycerol-to-glucose preference that depends on the combination of three conditions: (i) the sequestration of both metabolic pathways in the same subcellular compartment, here in the peroxisomal-like organelles named glycosomes; (ii) the competition for the same substrate, here ATP, with the first enzymatic step of the glycerol and glucose metabolic pathways being both ATP-dependent (glycerol kinase and hexokinase, respectively) and (iii) an unbalanced activity between the competing enzymes, here the glycerol kinase activity being ~80-fold higher than the hexokinase activity.


2020 ◽  
pp. 1-9
Author(s):  
Anaisa Valido Ferreira ◽  
Jorge Domiguéz-Andrés ◽  
Mihai Gheorghe Netea

Immunological memory is classically attributed to adaptive immune responses, but recent studies have shown that challenged innate immune cells can display long-term functional changes that increase nonspecific responsiveness to subsequent infections. This phenomenon, coined <i>trained immunity</i> or <i>innate immune memory</i>, is based on the epigenetic reprogramming and the rewiring of intracellular metabolic pathways. Here, we review the different metabolic pathways that are modulated in trained immunity. Glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle, amino acid, and lipid metabolism are interplaying pathways that are crucial for the establishment of innate immune memory. Unraveling this metabolic wiring allows for a better understanding of innate immune contribution to health and disease. These insights may open avenues for the development of future therapies that aim to harness or dampen the power of the innate immune response.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 60
Author(s):  
Juan Vélez ◽  
Zahady Velasquez ◽  
Liliana M. R. Silva ◽  
Ulrich Gärtner ◽  
Klaus Failing ◽  
...  

Cryptosporidium parvum is an apicomplexan zoonotic parasite recognized as the second leading-cause of diarrhoea-induced mortality in children. In contrast to other apicomplexans, C.parvum has minimalistic metabolic capacities which are almost exclusively based on glycolysis. Consequently, C. parvum is highly dependent on its host cell metabolism. In vivo (within the intestine) infected epithelial host cells are typically exposed to low oxygen pressure (1–11% O2, termed physioxia). Here, we comparatively analyzed the metabolic signatures of C. parvum-infected HCT-8 cells cultured under both, hyperoxia (21% O2), representing the standard oxygen condition used in most experimental settings, and physioxia (5% O2), to be closer to the in vivo situation. The most pronounced effect of C. parvum infection on host cell metabolism was, on one side, an increase in glucose and glutamine uptake, and on the other side, an increase in lactate release. When cultured in a glutamine-deficient medium, C. parvum infection led to a massive increase in glucose consumption and lactate production. Together, these results point to the important role of both glycolysis and glutaminolysis during C. parvum intracellular replication. Referring to obtained metabolic signatures, we targeted glycolysis as well as glutaminolysis in C. parvum-infected host cells by using the inhibitors lonidamine [inhibitor of hexokinase, mitochondrial carrier protein (MCP) and monocarboxylate transporters (MCT) 1, 2, 4], galloflavin (lactate dehydrogenase inhibitor), syrosingopine (MCT1- and MCT4 inhibitor) and compound 968 (glutaminase inhibitor) under hyperoxic and physioxic conditions. In line with metabolic signatures, all inhibitors significantly reduced parasite replication under both oxygen conditions, thereby proving both energy-related metabolic pathways, glycolysis and glutaminolysis, but also lactate export mechanisms via MCTs as pivotal for C. parvum under in vivo physioxic conditions of mammals.


1984 ◽  
Vol 4 (1) ◽  
pp. 49-53
Author(s):  
J L Celenza ◽  
M Carlson

A functional SNF1 gene product is required to derepress expression of many glucose-repressible genes in Saccharomyces cerevisiae. Strains carrying a snf1 mutation are unable to grow on sucrose, galactose, maltose, melibiose, or nonfermentable carbon sources; utilization of these carbon sources is regulated by glucose repression. The inability of snf1 mutants to utilize sucrose results from failure to derepress expression of the structural gene for invertase at the RNA level. We isolated recombinant plasmids carrying the SNF1 gene by complementation of the snf1 defect in S. cerevisiae. A 3.5-kilobase region is common to the DNA segments cloned in five different plasmids. Transformation of S. cerevisiae with an integrating vector carrying a segment of the cloned DNA resulted in integration of the plasmid at the SNF1 locus. This result indicates that the cloned DNA is homologous to sequences at the SNF1 locus. By mapping a plasmid marker linked to SNF1 in this transformant, we showed that the SNF1 gene is located on chromosome IV. We then mapped snf1 to a position 5.6 centimorgans distal to rna3 on the right arm; snf1 is not extremely closely linked to any previously mapped mutation.


1999 ◽  
Vol 12 (1) ◽  
pp. 112-125 ◽  
Author(s):  
Geoff Hide

SUMMARY The history of human sleeping sickness in East Africa is characterized by the appearance of disease epidemics interspersed by long periods of endemicity. Despite the presence of the tsetse fly in large areas of East Africa, these epidemics tend to occur multiply in specific regions or foci rather than spreading over vast areas. Many theories have been proposed to explain this phenomenon, but recent molecular approaches and detailed analyses of epidemics have highlighted the stability of human-infective trypanosome strains within these foci. The new molecular data, taken alongside the history and biology of human sleeping sickness, are beginning to highlight the important factors involved in the generation of epidemics. Specific, human-infective trypanosome strains may be associated with each focus, which, in the presence of the right conditions, can be responsible for the generation of an epidemic. Changes in agricultural practice, favoring the presence of tsetse flies, and the important contribution of domestic animals as a reservoir for the parasite are key factors in the maintenance of such epidemics. This review examines the contribution of molecular and genetic data to our understanding of the epidemiology and history of human sleeping sickness in East Africa.


Author(s):  
Xiaoqing Liu ◽  
Caixia Zhu ◽  
Yuyan Wang ◽  
Fang Wei ◽  
Qiliang Cai

Reprogramming of energy metabolism is a key for cancer development. Kaposi’s sarcoma-associated herpesvirus (KSHV), a human oncogenic herpesvirus, is tightly associated with several human malignancies by infecting B-lymphocyte or endothelial cells. Cancer cell energy metabolism is mainly dominated by three pathways of central carbon metabolism, including aerobic glycolysis, glutaminolysis, and fatty acid synthesis. Increasing evidence has shown that KSHV infection can alter central carbon metabolic pathways to produce biomass for viral replication, as well as the survival and proliferation of infected cells. In this review, we summarize recent studies exploring how KSHV manipulates host cell metabolism to promote viral pathogenesis, which provides the potential therapeutic targets and strategies for KSHV-associated cancers.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Marcel Tiebe ◽  
Marilena Lutz ◽  
Deniz Senyilmaz Tiebe ◽  
Aurelio A. Teleman

AbstractWe previously identified Drosophila REPTOR and REPTOR-BP as transcription factors downstream of mTORC1 that play an important role in regulating organismal metabolism. We study here the mammalian ortholog of REPTOR-BP, Crebl2. We find that Crebl2 mediates part of the transcriptional induction caused by mTORC1 inhibition. In C2C12 myoblasts, Crebl2 knockdown leads to elevated glucose uptake, elevated glycolysis as observed by lactate secretion, and elevated triglyceride biosynthesis. In Hepa1-6 hepatoma cells, Crebl2 knockdown also leads to elevated triglyceride levels. In sum, this works identifies Crebl2 as a regulator of cellular metabolism that can link nutrient sensing via mTORC1 to the metabolic response of cells.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1692 ◽  
Author(s):  
Jung-Ae Kim

Peroxisomes are metabolic organelles involved in lipid metabolism and cellular redoxbalance. Peroxisomal function is central to fatty acid oxidation, ether phospholipid synthesis, bile acidsynthesis, and reactive oxygen species homeostasis. Human disorders caused by genetic mutations inperoxisome genes have led to extensive studies on peroxisome biology. Peroxisomal defects are linkedto metabolic dysregulation in diverse human diseases, such as neurodegeneration and age-relateddisorders, revealing the significance of peroxisome metabolism in human health. Cancer is a diseasewith metabolic aberrations. Despite the critical role of peroxisomes in cell metabolism, the functionaleects of peroxisomes in cancer are not as well recognized as those of other metabolic organelles,such as mitochondria. In addition, the significance of peroxisomes in cancer is less appreciated thanit is in degenerative diseases. In this review, I summarize the metabolic pathways in peroxisomesand the dysregulation of peroxisome metabolism in cancer. In addition, I discuss the potential ofinactivating peroxisomes to target cancer metabolism, which may pave the way for more eectivecancer treatment.


Author(s):  
Zhongping Yin ◽  
Ling Bai ◽  
Wei Li ◽  
Tanlun Zeng ◽  
Huimin Tian ◽  
...  

Abstract T cells play important roles in anti-tumor immunity. Emerging evidence has revealed that distinct metabolic changes impact the activation and differentiation of T cells. Tailoring immune responses by manipulating cellular metabolic pathways and the identification of new targets may provide new options for cancer immunotherapy. In this review, we focus on recent advances in the metabolic reprogramming of different subtypes of T cells and T cell functions. We summarize how metabolic pathways accurately regulate T cell development, differentiation, and function in the tumor microenvironment. Because of the similar metabolism in activated T cells and tumor cells, we also describe the effect of the tumor microenvironment on T cell metabolism reprogramming, which may provide strategies for maximal anti-cancer effects and enhancing the immunity of T cells. Thus, studies of T lymphocyte metabolism can not only facilitate the basic research of immune metabolism, but also provide potential targets for drug development and new strategies for clinical treatment of cancer.


Sign in / Sign up

Export Citation Format

Share Document