scholarly journals Seismic cracking mechanism and control for pre-stressed concrete box girders of continuous rigid-frame bridges: Miaoziping bridge in Wenchuan earthquake as an example

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Lei Tong ◽  
Rongxia Wang ◽  
Dongsheng Wang

AbstractThe box girder of the Miaoziping Bridge, a three-span prestressed concrete continuous rigid-frame bridge, suffered a serious crack in its box section’s web near the 1/6 to 1/2 length of the side span and the middle-span length of 1/4 to 3/4, as a result of the 2008 Wenchuan earthquake, which also caused large lateral residual displacements at both ends of the side span. In this study, eight strong-motion records near the bridge site and two other records (El Centro and Taft) are selected as inputs for time-history analysis of the bridge. The cantilever construction process and initial stress of the box girder are considered in a bridge model for seismic numerical simulation. Further, the simulation results are compared with the actual earthquake damage. The cracking mechanism, influencing factors and control of the girder crack damage are discussed. The high-stress zones of the box girder agree with the seismic damage observed, even various seismic inputs are considered. The findings reveal that the maximum (principal) tensile stress of the girder exceeds the tensile strength of the concrete under the seismic excitations, and cracks occur. Under various input directions of ground motions, the proportion of the main girder stresses induced by the earthquake shows differences. After the failure of the shear keys in the transverse direction of the bridge, the stresses of the girder decrease in the mid-span. However, the beams at both ends of the side spans revealed large lateral displacements. Considering that the uplift of the beam ends, stress and axial torque of the girder’s side span are greatly reduced. Setting bi-directional friction pendulum bearings on the transition pier is an effective damping measure to control web cracking of the mid-span and lateral drifts of the beam ends.

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2398
Author(s):  
Asterios Leonidis ◽  
Maria Korozi ◽  
Eirini Sykianaki ◽  
Eleni Tsolakou ◽  
Vasilios Kouroumalis ◽  
...  

High stress levels and sleep deprivation may cause several mental or physical health issues, such as depression, impaired memory, decreased motivation, obesity, etc. The COVID-19 pandemic has produced unprecedented changes in our lives, generating significant stress, and worries about health, social isolation, employment, and finances. To this end, nowadays more than ever, it is crucial to deliver solutions that can help people to manage and control their stress, as well as to reduce sleep disturbances, so as to improve their health and overall quality of life. Technology, and in particular Ambient Intelligence Environments, can help towards that direction, when considering that they are able to understand the needs of their users, identify their behavior, learn their preferences, and act and react in their interest. This work presents two systems that have been designed and developed in the context of an Intelligent Home, namely CaLmi and HypnOS, which aim to assist users that struggle with stress and poor sleep quality, respectively. Both of the systems rely on real-time data collected by wearable devices, as well as contextual information retrieved from the ambient facilities of the Intelligent Home, so as to offer appropriate pervasive relaxation programs (CaLmi) or provide personalized insights regarding sleep hygiene (HypnOS) to the residents. This article will describe the design process that was followed, the functionality of both systems, the results of the user studies that were conducted for the evaluation of their end-user applications, and a discussion about future plans.


2018 ◽  
Vol 763 ◽  
pp. 295-300 ◽  
Author(s):  
Khaled Saif ◽  
Chin Long Lee ◽  
Trevor Yeow ◽  
Gregory A. MacRae

Nonlinear time history analyses of SDOF bridge columns with elasto-plastic flexural behaviour which are subject to eccentric gravity loading are conducted to quantify the effect of ratchetting. Peak and residual displacements were used as indicators of the degree of ratchetting. The effects of member axial loads and design force reduction factors were also investigated. It was shown that displacement demands increased with increasing eccentric moment. For eccentric moment of 30% of the yield moment, the average maximum and residual displacements increase by 4.2 and 3.8 times the maximum displacement, respectively, which the engineers calculate using static methods without considering ratchetting effect. Design curves for estimating the displacement demands for different eccentric moments are also developed. The current NZ1170.5 (2016) provisions were found to be inadequate in estimating the maximum displacement for steel structures, and hence, new provisions for steel structures should be presented.


2021 ◽  
Vol 13 (8) ◽  
pp. 4412
Author(s):  
Houqiang Yang ◽  
Nong Zhang ◽  
Changliang Han ◽  
Changlun Sun ◽  
Guanghui Song ◽  
...  

High-efficiency maintenance and control of the deep coal roadway surrounding rock stability is a reliable guarantee for sustainable development of a coal mine. However, it is difficult to control the stability of a roadway that locates near a roadway with large deformation. With return air roadway 21201 (RAR 21201) in Hulusu coal mine as the research background, in situ investigation, theoretical analysis, numerical simulation, and engineering practice were carried out to study pressure relief effect on the surrounding rock after the severe deformation of the roadway. Besides, the feasibility of excavating a new roadway near this damaged one by means of pressure relief effect is also discussed. Results showed that after the strong mining roadway suffered huge loose deformation, the space inside shrank so violently that surrounding rock released high stress to a large extent, which formed certain pressure relief effect on the rock. Through excavating a new roadway near this deformed one, the new roadway could obtain a relative low stress environment with the help of the pressure relief effect, which is beneficial for maintenance and control of itself. Equal row spacing double-bearing ring support technology is proposed and carried out. Engineering practice indicates that the new excavated roadway escaped from possible separation fracture in the roof anchoring range, and the surrounding rock deformation of the new roadway is well controlled, which verifies the pressure relief effect mentioned. This paper provides a reference for scientific mining under the condition of deep buried and high stress mining in western China.


1978 ◽  
Vol 68 (6) ◽  
pp. 1555-1576
Author(s):  
Michel Bouchon

abstract We model the San Fernando earthquake as a propagating rupture in a half-space, using for the slip-time-history on the fault plane analytical expressions which approximate the slip functions of dynamic crack models obtained by Das and Aki (1977a, b). We synthesize the strong ground motions and accelerations at the Pacoima Dam site and compute the teleseismic signals for different models of cracks. Three major featuras of the data–the strong pulse associated with the beginning of the rupture, the high acceleration phase on the Pacoima Dam records, and the presence of ripples on the teleseismic seismograms–which are not compatible with a smooth rupture process, are well explained by a crack with barriers model where the rupture encounters, along the fault plane, barriers or obstacles of high strength materials which may remain unbroken after the passage of the rupture front. A high-stress drop (400 to 500 bars) is required in the hypocentral area to explain the high-amplitude short-duration first pulse of the teleseismic records. This indicates a high level of tectonic stress in the area. A study of the earthquake series following the main shock shows that the aftershocks which took place in the region where major slipping occurred during the earthquake may represent the release of some of the barriers.


2018 ◽  
Vol 13 (2) ◽  
pp. 146-155 ◽  
Author(s):  
Zhuoya Yuan ◽  
Pui-Lam Ng ◽  
Darius Bačinskas ◽  
Jinsheng Du

To consider the effect of non-uniform shrinkage of box girder sections on the long-term deformations of continuous rigid frame bridges, and to improve the prediction accuracy of analysis in the design phase, this paper proposes a new simulation technique for use with general-purpose finite element program. The non-uniform shrinkage effect of the box girder is transformed to an equivalent temperature gradient and then applied as external load onto the beam elements in the finite element analysis. Comparative analysis of the difference in deflections between uniform shrinkage and nonuniform shrinkage of the main girder was made for a vehicular bridge in reality using the proposed technique. The results indicate that the maximum deflection of box girder under the action of non-uniform shrinkage is much greater than that under the action of uniform shrinkage. The maximum downward deflection of the bridge girder caused by uniform shrinkage is 5.6 mm at 20 years after completion of bridge deck construction, whereas the maximum downward deflection caused by non-uniform shrinkage is 21.6 mm, which is 3.8 times larger. This study shows that the non-uniform shrinkage effect of the girder sections has a significant impact on the long-term deflection of continuous rigid frame bridge, and it can be accurately simulated by the proposed transformation technique.


2019 ◽  
Vol 23 (3 Part A) ◽  
pp. 1563-1570
Author(s):  
Zhi-Long Zhang ◽  
Jing Xie ◽  
De-Ke Yu ◽  
Zhi-Jie Wen

This paper addresses a debris flow disaster in Yingxiu town after the Wenchuan earthquake. Through site investigation and data review, the geography and geological environment of the basin and the development, formation conditions and activity characteristics of the debris flow in the basin are analyzed. Calculate and analyze the characteristics of the debris flow, such as gravity, flow velocity and impact force. According to the management idea of combination of blocking and discharging, this paper proposes to arrange three blocking dams in the main ditch, construct drainage gullies in the downstream accumulation section, and prevent and control the aqueduct in the intersection of the main ditch and the G213 national road, which will be similar to the earthquake in the future. It is provided as a reference for research and prevention of the debris flow.


2010 ◽  
Vol 156-157 ◽  
pp. 467-472
Author(s):  
Peng Tao Yu ◽  
Jing Jiang Sun

Under the excitation of large earthquake, structures enter into high nonlinear stage. Currently, Opensees, Perform-3d and Canny are used as the most popular nonlinear analysis procedures. The fiber model will be introduced firstly and the nonlinear analysis models in Canny are explained in detail. Then Canny2007 is used to conduct nonlinear time history analysis on a heavily damaged frame structure with interlayer in Dujiangyan during Wenchuan Earthquake. Analysis shows that the maximum inter-story drift appears between the interlayer and its upper layer, and the heavy damage agrees well with the results of damage investigation. By comparing the damage extent of frame structures with or without interlayer, it reveals that the seismic performance of RC frame structures without interlayer is obviously better than that of ones with interlayer.


Author(s):  
I. A. Ubulom ◽  
K. Shankar ◽  
A. J. Neely

The stringent structural requirements posed on aircraft engines, especially the high pressure turbine blades, result from the diversity of the extreme operational conditions they are subjected to. The accurate life assessment of the blades under these conditions therefore demands accurate analytical tools and techniques, and also an elaborate understanding of the operational conditions. Given the drive to reduce cost related to experimental testing, numerical approaches are often adopted to aid in the initial design stages. With recent advancement in numerical modelling, the simultaneous integration of the various numerical codes of fluid flow and structural analysis (otherwise known as fluid-structure interaction) is projected to provide reliable input into fatigue life prediction programs. This study adopts the numerical method of fluid-structure interaction to investigate the fatigue properties of the Aachen turbine test case. A load-time history obtained for the high stress monitor position is superimposed on that from a quasi-static FE solution, and used as input into a fatigue estimation tool. The low cycle fatigue (LCF) is estimated using the Basquin-Coffin-Manson correlation with corrections for mean stress and multi-axial fatigue effects. An FFT analysis of the fluctuating aerodynamic loads show signals with significant high frequency content. There is noticeable increased energy signal at the rotor inlet as compared to stator inlet. The stator inlet signals, however, are characterized by multiple resonances of frequency with lower energy content. By avoiding the resonances, the fatigue analysis predicts a safe design with a safety factor level of 3 for the rotor.


2010 ◽  
Vol 163-167 ◽  
pp. 2369-2375 ◽  
Author(s):  
Ming Yuan ◽  
Dong Huang Yan

The stress state of finished bridge and service stage is influenced by various closure schemes in cantilever construction of multi-span prestressed concrete box-girder bridge. Two typical bridges—multi-span prestressed concrete continuous rigid frame bridge and girder bridge are investigated, The stress state in different closure schemes are analyzed using finite element(FE) analysis. Meanwhile, compared the healthy monitoring data, it has been found that taking the closure sequence from side span to middle span in cantilever construction of multi-span prestressed concrete box-girder bridge can lower stress of girder and pier in finished bridge stage, as well as reducing deformation of girder in service stage. Hence, the closure sequence from side span to middle span is more suitable for cantilever construction of multi-span prestressed concrete box-girder bridge.


Sign in / Sign up

Export Citation Format

Share Document