Surface Water–Groundwater Exchange Processes and Fluvial Ecosystem Function: An Analysis of Temporal and Spatial Scale Dependency

2008 ◽  
pp. 93-111
Author(s):  
Pascal Breil ◽  
Nancy B. Grimm ◽  
Philippe Vervier
2008 ◽  
Vol 59 (11) ◽  
pp. 1028 ◽  
Author(s):  
Tobias O. Bickel ◽  
Gerard P. Closs

Didymosphenia geminata (Lyngbye) Schmidt (commonly called didymo) is an invasive diatom and of concern to fisheries managers in North America and more recently New Zealand. Didymo grows in thick mats in several river systems on the South Island of New Zealand, often smothering entire river beds. Salmonid eggs, deposited in gravel nests (redds), depend on constant water exchange across the riverbed to provide oxygen-rich water for development. Thick didymo mats might restrict the flow of oxygen-rich water into spawning gravels, resulting in increased egg mortality and reduced trout recruitment. The present study measured hyporheic hydraulic conditions in trout redds with varying didymo cover in the Clutha River catchment, South Island, New Zealand. Didymo cover had no significant effects on several hydraulic variables (flow into the substrate, hydraulic conductivity and hyporheic oxygen concentration). However, there was a significant difference in the potential surface water–groundwater exchange between sites, suggesting some effect of didymo on hydraulic conditions. Considering the limited number of replicates, the impact of didymo on trout redds in the Clutha River cannot be excluded. The present study highlights the need for further research on the possible effects of didymo on important surface water–groundwater exchange processes.


2016 ◽  
Vol 30 (21) ◽  
pp. 3770-3787 ◽  
Author(s):  
Erich T. Hester ◽  
Christopher R. Guth ◽  
Durelle T. Scott ◽  
Charles N. Jones

2021 ◽  
Vol 13 (12) ◽  
pp. 2355
Author(s):  
Linglin Zeng ◽  
Yuchao Hu ◽  
Rui Wang ◽  
Xiang Zhang ◽  
Guozhang Peng ◽  
...  

Air temperature (Ta) is a required input in a wide range of applications, e.g., agriculture. Land Surface Temperature (LST) products from Moderate Resolution Imaging Spectroradiometer (MODIS) are widely used to estimate Ta. Previous studies of these products in Ta estimation, however, were generally applied in small areas and with a small number of meteorological stations. This study designed both temporal and spatial experiments to estimate 8-day and daily maximum and minimum Ta (Tmax and Tmin) on three spatial scales: climate zone, continental and global scales from 2009 to 2018, using the Random Forest (RF) method based on MODIS LST products and other auxiliary data. Factors contributing to the relation between LST and Ta were determined based on physical models and equations. Temporal and spatial experiments were defined by the rules of dividing the training and validation datasets for the RF method, in which the stations selected in the training dataset were all included or not in the validation dataset. The RF model was first trained and validated on each spatial scale, respectively. On a global scale, model accuracy with a determination coefficient (R2) > 0.96 and root mean square error (RMSE) < 1.96 °C and R2 > 0.95 and RMSE < 2.55 °C was achieved for 8-day and daily Ta estimations, respectively, in both temporal and spatial experiments. Then the model was trained and cross-validated on each spatial scale. The results showed that the data size and station distribution of the study area were the main factors influencing the model performance at different spatial scales. Finally, the spatial patterns of the model performance and variable importance were analyzed. Both daytime and nighttime LST had a significant contribution in the 8-day Tmax estimation on all the three spatial scales; while their contribution in daily Tmax estimation varied over different continents or climate zones. This study was expected to improve our understanding of Ta estimation in terms of accuracy variations and influencing variables on different spatial and temporal scales. The future work mainly includes identifying underlying mechanisms of estimation errors and the uncertainty sources of Ta estimation from a local to a global scale.


Author(s):  
Chunli Zhao ◽  
Jianguo Chen ◽  
Peng Du ◽  
Hongyong Yuan

It has been demonstrated that climate change is an established fact. A good comprehension of climate and extreme weather variation characteristics on a temporal and a spatial scale is important for adaptation and response. In this work, the characteristics of temperature, precipitation, and extreme weather distribution and variation is summarized for a period of 60 years and the seasonal fluctuation of temperature and precipitation is also analyzed. The results illustrate the reduction in daily and annual temperature divergence on both temporal and spatial scales. However, the gaps remain relatively significant. Furthermore, the disparity in daily and annual precipitation are found to be increasing on both temporal and spatial scales. The findings indicate that climate change, to a certain extent, narrowed the temperature gap while widening the precipitation gap on temporal and spatial scales in China.


2010 ◽  
Vol 392 (1-2) ◽  
pp. 1-11 ◽  
Author(s):  
Robert J. Ryan ◽  
Claire Welty ◽  
Philip C. Larson

2020 ◽  
Vol 28 (8) ◽  
pp. 2697-2712
Author(s):  
Robert Earon ◽  
Joakim Riml ◽  
Liwen Wu ◽  
Bo Olofsson

AbstractInteraction between surface water and groundwater plays a fundamental role in influencing aquatic chemistry, where hyporheic exchange processes, distribution of flow paths and residence times within the hyporheic zone will influence the transport of mass and energy in the surface-water/groundwater system. Geomorphological conditions greatly influence hyporheic exchange, and heterogeneities such as rocks and clay lenses will be a key factor for delineating the hyporheic zone. Electrical resistivity tomography (ERT) and ground-penetrating radar (GPR) were used to investigate the streambed along a 6.3-m-long reach in order to characterise geological layering and distinct features which may influence parameters such as hydraulic conductivity. Time-lapse ERT measurements taken during a tracer injection demonstrated that geological features at the meter-scale played a determining role for the hyporheic flow field. The penetration depth of the tracer into the streambed sediment displayed a variable spatial pattern in areas where the presence of highly resistive anomalies was detected. In areas with more homogeneous sediments, the penetration depth was much more uniformly distributed than observed in more heterogeneous sections, demonstrating that ERT can play a vital role in identifying critical hydraulic features that may influence hyporheic exchange processes. Reciprocal ERT measurements linked variability and thus uncertainty in the modelled resistivity to the spatial locations, which also demonstrated larger variability in the tracer penetration depth, likely due to local heterogeneity in the hydraulic conductivity field.


2005 ◽  
Vol 23 (2) ◽  
pp. 553-566 ◽  
Author(s):  
R. Nakamura ◽  
O. Amm ◽  
H. Laakso ◽  
N. C. Draper ◽  
M. Lester ◽  
...  

Abstract. An isolated plasma sheet flow burst took place at 22:02 UT, 1 September 2002, when the Cluster footpoint was located within the area covered by the Magnetometers-Ionospheric Radars-All-sky Cameras Large Experiment (MIRACLE). The event was associated with a clear but weak ionospheric disturbance and took place during a steady southward IMF interval, about 1h preceding a major substorm onset. Multipoint observations, both in space and from the ground, allow us to discuss the temporal and spatial scale of the disturbance both in the magnetosphere and ionosphere. Based on measurements from four Cluster spacecraft it is inferred that Cluster observed the dusk side part of a localized flow channel in the plasma sheet with a flow shear at the front, suggesting a field-aligned current out from the ionosphere. In the ionosphere the equivalent current pattern and possible field-aligned current location show a pattern similar to the auroral streamers previously obtained during an active period, except for its spatial scale and amplitude. It is inferred that the footpoint of Cluster was located in the region of an upward field-aligned current, consistent with the magnetospheric observations. The entire disturbance in the ionosphere lasted about 10min, consistent with the time scale of the current sheet disturbance in the magnetosphere. The plasma sheet bulk flow, on the other hand, had a time scale of about 2min, corresponding to the time scale of an equatorward excursion of the enhanced electrojet. These observations confirm that localized enhanced convection in the magnetosphere and associated changes in the current sheet structure produce a signature with consistent temporal and spatial scale at the conjugate ionosphere.


Sign in / Sign up

Export Citation Format

Share Document