Fabrication of MoO 3 / TiO 2 ‐SiO 2 with hollow spherical shape using resin as the template: Effect of decomposition of resins

2021 ◽  
pp. 50851
Author(s):  
Svetlana A. Kuznetsova ◽  
Olga S. Khalipova ◽  
Konstantin V. Lisitsa ◽  
Alexander A. Ditts ◽  
Alexandra G. Malchik ◽  
...  
1984 ◽  
Vol 75 ◽  
pp. 607-613 ◽  
Author(s):  
Kevin D. Pang ◽  
Charles C. Voge ◽  
Jack W. Rhoads

Abstract.All observed optical and infrared properties of Saturn's E-ring can be explained in terms of Mie scattering by a narrow size distribution of ice spheres of 2 - 2.5 micron diameter. The spherical shape of the ring particles and their narrow size distribution imply a molten (possibly volcanic) origin on Enceladus. The E-ring consists of many layers, possibly stratified by electrostatic levitation.


Author(s):  
H.C. Eaton ◽  
B.N. Ranganathan ◽  
T.W. Burwinkle ◽  
R. J. Bayuzick ◽  
J.J. Hren

The shape of the emitter is of cardinal importance to field-ion microscopy. First, the field evaporation process itself is closely related to the initial tip shape. Secondly, the imaging stress, which is near the theoretical strength of the material and intrinsic to the imaging process, cannot be characterized without knowledge of the emitter shape. Finally, the problem of obtaining quantitative geometric information from the micrograph cannot be solved without knowing the shape. Previously published grain-boundary topographies were obtained employing an assumption of a spherical shape (1). The present investigation shows that the true shape deviates as much as 100 Å from sphericity and boundary reconstructions contain considerable error as a result.Our present procedures for obtaining tip shape may be summarized as follows. An empirical projection, D=f(θ), is obtained by digitizing the positions of poles on a field-ion micrograph.


Author(s):  
N B Bhagat ◽  
A V Yadav ◽  
P R Mastud ◽  
R A Khutale

In this article we describe the optimizing parameters in the process of spherical crystallisation. Particle engineering of active pharmaceutical agents is an innovative area of research in pharmaceutical industry because of several advantages. Spherical crystallization is one of the particle engineering technique in which drug directly gets crystallized and agglomerated into spherical shape. The spherical crystals can be obtained by different methods like solvent change, Quasi-emulsion droplet, ammonia diffusion and neutralisation. The optimization of process of spherical crystallization is important for obtaining the ideal spherical crystal agglomerates. It includes stirring rate, selection of solvent, pH, temperature etc. which affects on the physico-chemical properties of crystals. These optimizing parameters play its specific role in formation of spherical crystals. Stirring rate affects the shape as well as size of the final agglomerates and solvent selection helps in the formation of maximum amount of agglomerates in the system. The factors like pH and temperature should be maintained in case of drugs which show polymorphism. Apart from this, several others physical phenomenon or parameters like interfacial tension and rate of crystallisation are also important for thorough optimization of process.  


Author(s):  
Nisha Patel ◽  
Hitesh A Patel

In this study, we sought to improve the dissolution characteristics of a poorly water-soluble BCS class IV drug canaglifozin, by preparing nanosuspension using media milling method. A Plackett–Burman screening design was employed to screen the significant formulation and process variables. A total of 12 experiment were generated by design expert trial version 12 for screening 5 independent variables namely the amount of stabilizer in mg (X1), stirring time in hr (X2), amt of Zirconium oxide beads in gm (X3), amount of drug in mg (X4) and stirring speed in rpm (X5) while mean particle size in nm (Y1) and drug release in 10 min. were selected as the response variables. All the regression models yielded a good fit with high determination coefficient and F value. The Pareto chart depicted that all the independent variables except the amount of canaglifozin had a significant effect (p<0.001) on the response variables. The mathematical model for mean particle size generated from the regression analysis was given by mean particle size = +636.48889 -1.28267 amt of stabilizer(X1) -4.20417 stirring time (X2) -7.58333 amt of ZrO2 beads(X3) -0.105556 amt of drug(X4) -0.245167 stirring speed(X5) (R2=0.9484, F ratio=22.07, p<0.001). Prepared canaglifozin nanosuspension exemplified a significant improvement (p<0.05) in the release as compared to pure canaglifozin and marketed tablet with the optimum formulation releasing almost 80% drug within first 10min. Optimized nanosuspension showed spherical shape with surface oriented stabilizer molecules and a mean particle diameter of 120.5 nm. There was no change in crystalline nature after formulation and it was found to be chemically stable with high drug content.


In this paper, easy, rapid and cheap synthetic method was described for florfenicol-silver nanocomposite by sonochemical method. Florfenicol-silver nanocomposite was characterized based on three classes namely index, identification and morphology class. Index characterization was carried out by zeta sizing, BET surface area and zeta potential. Identification characterization was performed using X-ray diffraction (XRD) and Raman spectrometry. Morphology characterization was done utilizing transmission electron microscope (TEM), scanning electron microscope (SEM) and atomic force microscope (AFM). Characterization results showed zeta sizing of florfenicol was 30.44nm, while florfenicol-silver nanocomposite was 33.5 nm with zeta potential -14.1 and -18, respectively. BET surface area was found to be 13.3, 73.2 and 103.69 m2/g for florfenicol, silver nanoparticles and florfenicol-silver nanocomposite respectively. XRD and Raman charts confirmed the formation of florfenicol-silver nanocomposite without any contamination. TEM, SEM and AFM spectral data illustrated spherical to sub spherical shape of silver nanoparticles on cubic to sheet shape of florfenicol with size less than 50 nm. Antimicrobial activity was screened where the average zone of inhibitions caused by the prepared nanocomposite were 28.3 mm, 24 mm, 27.3 mm and 24 mm compared to 17.7 mm, 16 mm, 18.7 mm and 13.3 mm of the native drug and 13 mm, 10 mm, 14.3 mm and 15 mm of the used positive reference standards against E. coli, Salmonella typhymurium, Staphylococcus aureus and Staph.aureus MRSA respectively.


2020 ◽  
Vol 17 ◽  
Author(s):  
Tarek Faris ◽  
Gamaleldin I. Harisa ◽  
Fars K. Alanazi ◽  
Mohamed M. Badran ◽  
Afraa Mohammad Alotaibi ◽  
...  

Aim: This study aimed to explore an affordable technique for the fabrication of Chitosan Nanoshuttles (CSNS) at the ultrafine nanoscale less than 100 nm with improved physicochemical properties, and cytotoxicity on the MCF-7 cell line. Background: Despite several studies reported that the antitumor effect of CS and CSNS could achieve intracellular compartment target ability, no enough available about this issue and further studies are required to address this assumption. Objectives: The objective of the current study was to investigate the potential processing variables for the production of ultrafine CSNS (> 100 nm) using Box-Benhken Design factorial design (BBD). This was achieved through a study of the effects of processing factors, such as CS concentration, CS/TPP ratio, and pH of the CS solution, on PS, PDI, and ZP. Moreover, the obtained CSNS was evaluated for physicochemical characteristics, morphology Also, hemocompatibility, and cytotoxicity using Red Blood Cells (RBCs) and MCF-7 cell lines were investigated. Methods: Box-Benhken Design factorial design (BBD) was used in the analysis of different selected variables. The effects of CS concentration, sodium tripolyphosphate (TPP) ratio, and pH on particle size, Polydispersity Index (PDI), and Zeta Potential (ZP) were measured. Subsequently, the prepared CS nanoshuttles were exposed to stability studies, physicochemical characterization, hemocompatibility, and cytotoxicity using red blood cells and MCF-7 cell lines as surrogate models for in vivo study. Result: The present results revealed that the optimized CSNS have ultrafine nanosize, (78.3±0.22 nm), homogenous with PDI (0.131±0.11), and ZP (31.9±0.25 mV). Moreover, CSNS have a spherical shape, amorphous in structure, and physically stable. Also, CSNS has biological safety as indicated by a gentle effect on red blood cell hemolysis, besides, the obtained nanoshuttles decrease MCF-7 viability. Conclusion: The present findings concluded that the developed ultrafine CSNS has unique properties with enhanced cytotoxicity. thus promising for use in intracellular organelles drug delivery.


Author(s):  
Muhammad Nadeem Ashraf ◽  
Muhammad Hussain ◽  
Zulfiqar Habib

Diabetic Retinopathy (DR) is a major cause of blindness in diabetic patients. The increasing population of diabetic patients and difficulty to diagnose it at an early stage are limiting the screening capabilities of manual diagnosis by ophthalmologists. Color fundus images are widely used to detect DR lesions due to their comfortable, cost-effective and non-invasive acquisition procedure. Computer Aided Diagnosis (CAD) of DR based on these images can assist ophthalmologists and help in saving many sight years of diabetic patients. In a CAD system, preprocessing is a crucial phase, which significantly affects its performance. Commonly used preprocessing operations are the enhancement of poor contrast, balancing the illumination imbalance due to the spherical shape of a retina, noise reduction, image resizing to support multi-resolution, color normalization, extraction of a field of view (FOV), etc. Also, the presence of blood vessels and optic discs makes the lesion detection more challenging because these two artifacts exhibit specific attributes, which are similar to those of DR lesions. Preprocessing operations can be broadly divided into three categories: 1) fixing the native defects, 2) segmentation of blood vessels, and 3) localization and segmentation of optic discs. This paper presents a review of the state-of-the-art preprocessing techniques related to three categories of operations, highlighting their significant aspects and limitations. The survey is concluded with the most effective preprocessing methods, which have been shown to improve the accuracy and efficiency of the CAD systems.


1984 ◽  
Vol 49 (6) ◽  
pp. 1448-1458
Author(s):  
Josef Kopešťanský

The effect of temperature and structure of the palladium surfaces on acetylene chemisorption was studied along with the interaction of the adsorbed layers with molecular and atomic hydrogen. The work function changes were measured and combined with the volumetric measurements and analysis of the products. At temperature below 100 °C, acetylene is adsorbed almost without dissociation and forms at least two different types of thermally stable adsorption complexes. Acetylene adsorbed at 200 °C is partly decomposed, especially in the low coverage region. Besides the above mentioned effects, the template effect of adsorbed acetylene was studied in the temperature range from -80° to 25 °C. It has been shown that this effect is a typical phenomenon of the palladium-acetylene system which is not due to surface impurities.


2019 ◽  
Vol 9 (7) ◽  
pp. 1308 ◽  
Author(s):  
Rob Kleijnen ◽  
Manfred Schmid ◽  
Konrad Wegener

This work describes the production of a spherical polybutylene terephthalate (PBT) powder and its processing with selective laser sintering (SLS). The powder was produced via melt emulsification, a continuous extrusion-based process. PBT was melt blended with polyethylene glycol (PEG), creating an emulsion of spherical PBT droplets in a PEG matrix. Powder could be extracted after dissolving the PEG matrix phase in water. The extrusion settings were adjusted to optimize the size and yield of PBT particles. After classification, 79 vol. % of particles fell within a range of 10–100 µm. Owing to its spherical shape, the powder exhibited excellent flowability and packing properties. After powder production, the width of the thermal processing (sintering) window was reduced by 7.6 °C. Processing of the powder on a laser sintering machine was only possible with difficulties. The parts exhibited mechanical properties inferior to injection-molded specimens. The main reason lied in the PBT being prone to thermal degradation and hydrolysis during the powder production process. Melt emulsification in general is a process well suited to produce a large variety of SLS powders with exceptional flowability.


Sign in / Sign up

Export Citation Format

Share Document