Investigation into poloxamer 188‐based cubosomes as a polymeric carrier for poor water‐soluble actives

2021 ◽  
pp. 51612
Author(s):  
Swanya Yakaew ◽  
Kunlathida Luangpradikun ◽  
Preeyawass Phimnuan ◽  
Nitra Nuengchamnong ◽  
Nuntaporn Kamonsutthipaijit ◽  
...  
Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1126
Author(s):  
Dipy M. Vasa ◽  
Zainab Bakri ◽  
Maureen D. Donovan ◽  
Lauren A. O’Donnell ◽  
Peter L. D. Wildfong

Ribavirin is a water-soluble antiviral compound which, owing to its inability to cross the blood–brain barrier, has limited effectiveness in treating viruses affecting the central nervous system. Direct nose-to-brain delivery was investigated for ribavirin in combination with poloxamer 188, an excipient known to enhance the absorption of drug compounds administered intranasally. Composite solid microparticles suitable for intranasal insufflation were prepared by suspending fine crystals of ribavirin in a matrix of poloxamer 188, which were cryogenically milled and characterized to ensure that ribavirin remained stable throughout preparation. In vitro diffusion of ribavirin across a semi-permeable regenerated cellulose membrane showed comparable cumulative drug release after 180 min from both fine solid particles (<20 µm) and 1:1 ribavirin:poloxamer microparticles (d50 = 20 µm); however, the initial release from polymer microparticles was slower, owing to gel formation on the membrane surface. When solid ribavirin was directly deposited on excised olfactory mucosa, either as fine drug particles or 1:1 ribavirin:poloxamer microparticles, permeation was significantly increased from microparticles containing poloxamer 188, suggesting additional interactions between the polymer and olfactory mucosa. These data indicate that for highly water-soluble drugs such as ribavirin or drugs subject to efflux by the nasal mucosa, a formulation of poloxmer-containing microparticles can enhance permeability across the olfactory epithelium and may improve direct nose-to-brain transport.


Author(s):  
MAHAPARALE PR ◽  
THORAT VP

Objective: Leflunomide is Non steroidal Anti-Inflammatory drug, which is poorly water soluble. In present study attempt has been made to prepare and characterize solid dispersions of leflunomide to increase solubility of drug.Method:  In Preparation of solid dispersion of leflunomide different polymer like PEG 4000, PEG 6000, Poloxamer 188 and Poloxamer 407 were used.  Effects of several variables such as type of carrier used, drug: carrier ratios, method of preparation were studied. The evaluation of solid dispersions was done by solubility study, dissolution study and X-ray diffractometry. Result: Improvement in dissolution of drug was observed in all solid dispersions as compared to pure drug alone. Solid dispersions prepared using Poloxamer 188 showed fastest in vitro drug release. Solid dispersions prepared using solvent evaporation method showed relatively faster drug release than melt evaporation method. XRD patterns indicated reduced crystallinity of drug particles, which suggests mechanism of enhanced solubility and dissolution of drug in solid dispersion systems.Conclusion:  A significant result obtained with the study indicated that solid dispersion by solvent evaporation can successfully be further explored and employed to improve solubility and dissolution characteristics of poorly soluble drugs.Keywords: Leflunomide, Solid dispersion, Carrier


Author(s):  
Manimaran V ◽  
Damodharan N

Objective: Amlodipine besylate is a calcium channel blocker used in the treatment of hypertension which is practically insoluble in water. The present study aims to design oral fast-release tablets of amlodipine besylate and to optimize the dissolution of the drug by altering the carrier concentration.Materials and Methods: Poloxamer 407 (P407) and poloxamer 188 (P188) were selected as carriers for the preparation of solid dispersion (SD) by the solvent evaporation method with different drug-polymer ratios. The prepared SDs were evaluated for the physical state, drug:carrier interactions by X-ray diffraction (XRD), infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy.Results: From the dissolution studies, it is confirmed that all SDs showed increased dissolution rate when compared to pure amlodipine besylate. Among the two polymers used, P407 was found to be better than P188 in enhancing dissolution efficiency. The tablets were prepared using SD of amlodipine besylate containing P407 as a carrier. The results showed that P407 SD-based tablets gave a significantly higher release of amlodipine besylate when compared with control tablets. The infrared spectral studies showed that there was no significant interaction between amlodipine besylate and its formulation with different polymers used in the preparation of SDs. XRD studies revealed that the degree of crystallinity of amlodipine besylate reduced when the concentration of carriers increased, which reveals that the drug is in amorphous nature.Conclusion: The combination of SD technology and using superdisintegrants in the formulation is a promising approach for preparing efficient, fast-dissolving tablet of poorly water-soluble drugs, viz., amlodipine besylate.


Author(s):  
Rupali Shid L. ◽  
Shashikant N. Dhole ◽  
Nilesh Kulkarni ◽  
Santosh L. Shid L.

Poor water solubility and slow dissolution rate are issues polydispersity index. The obtained results showed that for the majority of upcoming and existing biologically active  particlesize (nm) and rate of dissolution has been improved compounds. Simvastatin is poorly water-soluble drug and  when nanosuspension prepared with the higher its bioavailability is very low from its crystalline form. The  concentration of PVPK-30 with the higher concentration of purpose of the present investigation was to increase the  PVP K-30 and Poloxamer-188 and lower concentration of solubility and dissolution rate of simvastatin by the  SLS. The partical size and zeta potential of optimized preparation of nanosuspension by Emulsification Solvent  formulation was found to be 258.3 nm and 23.43. The rate Diffusion Method at laboratory scale. Prepared nanosus- of dissolution of the optimized nanosuspension was pension was evaluated for its particle size and in vitro  enhanced (90.02% in 60 min), relative to plain simvastatin dissolution study and characterized by zeta potential, (21% in 60 min), mainly due to the formation of nanosized differential scanning calorimetry (DSC) and X-Ray particles. These results indicate the suitability of 23 factorial diffractometry (XRD), motic digital microscopy, entrapment  design for preparation of simvastatin loaded efficiency, total drug content, saturated solubility study and nanosuspension significantly improved in vitro dissolution in vivo study. A 23 factorial design was employed to study  rate, and thus possibly enhance fast onset of therapeutic the effect of independent variables, amount of SLS (X1), drug effect. In vivo study shows increase in bioavailability in amount of PVPK-30 (X2) and Poloxamer-188 (X3) and  nanosuspension formulation than the plain simvastatin dependent variables are total drug content and drug. 


Author(s):  
Venkatarao Mannem ◽  
Vidyadhara Suryadevara ◽  
Sandeep Doppalapudi

Objective: The current research focuses on solubility enhancement of poorly water-soluble drug telmisartan, using novel superdisintegrants such as Entada scandens seed starch and Poloxamer-188. Starches yielded from plants are pharmaceutically useful as binders, diluents, disintegrants, and lubricants.Methods: Starches were extracted from E. scandens seed powder using alkali method (sodium hydroxide at 0.1%, 0.25%, and 0.5% concentrations) and water. These starches were subjected for the evaluation of various physicochemical properties and phytochemical tests.Results: The phytochemical tests revealed the presence of only starch in all the extracts. Of all the starches, the starch prepared from 0.5% sodium hydroxide (ESS4) showed best physicochemical properties. Solid dispersions were prepared using telmisartan, poloxamer-188, and starch (ESS4) in various concentrations using fusion technique. Various pre-formulation parameters were evaluated. From in vitro dissolution studies, it was observed that the solid dispersion formulation TP7 containing telmisartan and poloxamer-188 in 1:4 ratios showed better dissolution rate. Solid dispersion TPS7 containing TP7 formulation and 15% w/w of alkali extracted starch showed faster disintegration and enhanced dissolution rate than the solid dispersions prepared alone with poloxamer-188. Fourier transform infrared spectroscopy and differential scanning calorimetric studies for optimized formulations revealed that there were no major interactions between the drug and excipients. X-ray diffraction studies revealed the crystalline and amorphous nature of formulations.Conclusion: Thus, the solid dispersions prepared using E. scandens seed starch revealed the superdisintegrant property of starch. 


2021 ◽  
Vol 12 (4) ◽  
pp. 23-33
Author(s):  
Prashant Kumar ◽  
Sunil Khatak

The aim of this dissertation work was to develop and characterize an optimal formulation of solid lipid nanoparticles of nadifloxacin, which would then be incorporated into hydrogel. The SLN was developed with drug nadifloxacin, which is poorly water soluble. On the basis of solubility studies (i.e. partitioning effects), the lipid and components were chosen. In this study, the two variables amount of lipid and concentration of Poloxamer 188 were studied. The EE increased as the concentration of Poloxamer 188 increased. The particle size was observed to decrease as the concentration of Poloxamer 188 was increased. The EE increased in a similar way as the amount of lipid was increased. So the purpose was to formulate hydrogel with carbopol 940 with improved drug entrapment, sufficient viscosity, good extrudability, good homogeneity and improved drug release. Hydrogels are polymers that have swelling ability in water or aqueous solvent systems. Due to their increased water content, gels can provide a better feeling for skin than other conventional dosage forms. Hydrogels are insoluble in water. They are not easily removed from the application site.


Author(s):  
Olga Zhukova ◽  
SERGEY A. RYABOV ◽  
SERGEY D. ZAITSEV ◽  
OLGA V. KUZNETSOVA ◽  
DARIA M. GAVRILOVA ◽  
...  

Objective: The objective of this work was to obtain a water-soluble 5-fluorouracil (5-FU) polymeric complex on the basis of a methacrylic acid (MAA) copolymer to be used as an injectable chemotherapeutic agent. Methods: A polymeric carrier was synthesized using tert-butyl methacrylate (TBMA) as a monomer, thioglycolic acid, and azobisisobutyronitrile as a radical polymerization initiator. The polymer was converted by acid hydrolysis into a water-soluble copolymer of TBMA and MAA of 20: 80 mass%, respectively. The copolymer of TBMA and MAA was modified with 5-FU. Their formation was proved using IR and UV spectroscopy. The particle size of the 5-FU polymeric complex was estimated by turbidimetry, which is based on measuring the intensity of light transmitted through a disperse system. The release of 5-FU from the obtained ionic complexes by dialysis in vitro was evaluated. Results: Polymeric carriers were obtained with different amounts of 5-FU (5, 15, 25, 50 mol%). A high peak at λ = 266 nm was observed in the UV spectrum of the polymeric carrier (characteristic of 5-FU). The particle size was estimated at 13 nm for the complex with 5 mol% 5-FU and 26.8 n for the complex with 50 mol% 5-FU. The 5-FU release was estimated in two parallel experiments at 37 °C. One utilized a phosphate-citrate buffer with pH 5.0 to model the intracellular space and the other, a phosphate buffer with pH 7.4 to model the intravascular space. Two systems, with 5 and 15 mol% 5-FU, were chosen for testing. In both phosphate buffer and phosphate-citrate buffer, 5-FU was released from the polymeric complex with 5 mol% 5-FU approximately 1.3 times faster than from the complex containing 5 mol% 5-fluorouracil. The kinetics of 5-FU release from the polymeric complex (5 mol% 5-fluorouracil) showed that the 5-FU release was 77.9% in phosphate-citrate buffer and 59.6% in phosphate buffer over 52 h of dialysis. When the 5-FU release kinetics was studied with the polymeric complex containing 15 mol% 5-FU, the 5-FU release was 100.0% in phosphate-citrate buffer and 75.1% in phosphate buffer over 57 h of dialysis. Conclusion: Water-soluble nanoscale complexes of 5-FU with TBMA–MAA copolymers extend application of 5-FU, while its general toxicity might be lower. The complexes are sufficiently stable at pH 7.4 and readily release 5-FU at pH 5.0.


Author(s):  
Ashwin Kuchekar ◽  
Jayesh Jathar ◽  
Ashwini Gawade ◽  
Bhanudas Kuchekar

Aims: Nanoparticles are the colloidal carrier systems for delivery of poorly soluble drugs. Budesonide. (BUD) a corticosteroid practically insoluble in water is used in asthma treatment. The aim of the present research work was to develop and evaluate BUD nanoparticles. Methodology: The prepared formulation was analyzed for % encapsulation efficiency, particle size analysis, zeta potential, polydispersity index (PDI), scanning electron microscopy and transmission electron microscopy. Poloxamer-188 was found in stabilizing BUD nanoparticles. Results: The observed % encapsulation efficiency of the optimized batch was (82.95) %, particle size was 271.8 nm with PDI 0.456. Solvent injection method was successfully implemented to developed BUD nanoparticles poloxamer-188. Sonication time and amplitude played an important role in governing the particle size. Conclusion: It can be inferred from the study that nanoparticles are a potential drug delivery method for poorly water-soluble drug delivery which can not only get impacted by formulation variables but also by process variables.


Author(s):  
J. G. Robertson ◽  
D. F. Parsons

The extraction of lipids from tissues during fixation and embedding for electron microscopy is widely recognized as a source of possible artifact, especially at the membrane level of cell organization. Lipid extraction is also a major disadvantage in electron microscope autoradiography of radioactive lipids, as in studies of the uptake of radioactive fatty acids by intestinal slices. Retention of lipids by fixation with osmium tetroxide is generally limited to glycolipids, phospholipids and highly unsaturated neutral lipids. Saturated neutral lipids and sterols tend to be easily extracted by organic dehydrating reagents prior to embedding. Retention of the more saturated lipids in embedded tissue might be achieved by developing new cross-linking reagents, by the use of highly water soluble embedding materials or by working at very low temperatures.


Author(s):  
J. D. McLean ◽  
S. J. Singer

The successful application of ferritin labeled antibodies (F-A) to ultrathin sections of biological material has been hampered by two main difficulties. Firstly the normally used procedures for the preparation of material for thin sectioning often result in a loss of antigenicity. Secondly the polymers employed for embedding may non-specifically absorb the F-A. Our earlier use of cross-linked polyampholytes as embedding media partially overcame these problems. However the water-soluble monomers used for this method still extract many lipids from the material.


Sign in / Sign up

Export Citation Format

Share Document